IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0042230.html
   My bibliography  Save this article

Mathematical Modelling of the MAP Kinase Pathway Using Proteomic Datasets

Author

Listed:
  • Tianhai Tian
  • Jiangning Song

Abstract

The advances in proteomics technologies offer an unprecedented opportunity and valuable resources to understand how living organisms execute necessary functions at systems levels. However, little work has been done up to date to utilize the highly accurate spatio-temporal dynamic proteome data generated by phosphoprotemics for mathematical modeling of complex cell signaling pathways. This work proposed a novel computational framework to develop mathematical models based on proteomic datasets. Using the MAP kinase pathway as the test system, we developed a mathematical model including the cytosolic and nuclear subsystems; and applied the genetic algorithm to infer unknown model parameters. Robustness property of the mathematical model was used as a criterion to select the appropriate rate constants from the estimated candidates. Quantitative information regarding the absolute protein concentrations was used to refine the mathematical model. We have demonstrated that the incorporation of more experimental data could significantly enhance both the simulation accuracy and robustness property of the proposed model. In addition, we used the MAP kinase pathway inhibited by phosphatases with different concentrations to predict the signal output influenced by different cellular conditions. Our predictions are in good agreement with the experimental observations when the MAP kinase pathway was inhibited by phosphatase PP2A and MKP3. The successful application of the proposed modeling framework to the MAP kinase pathway suggests that our method is very promising for developing accurate mathematical models and yielding insights into the regulatory mechanisms of complex cell signaling pathways.

Suggested Citation

  • Tianhai Tian & Jiangning Song, 2012. "Mathematical Modelling of the MAP Kinase Pathway Using Proteomic Datasets," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-12, August.
  • Handle: RePEc:plo:pone00:0042230
    DOI: 10.1371/journal.pone.0042230
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0042230
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0042230&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0042230?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mochamad Apri & Jaap Molenaar & Maarten de Gee & George van Voorn, 2010. "Efficient Estimation of the Robustness Region of Biological Models with Oscillatory Behavior," PLOS ONE, Public Library of Science, vol. 5(4), pages 1-12, April.
    2. Ruedi Aebersold & Matthias Mann, 2003. "Mass spectrometry-based proteomics," Nature, Nature, vol. 422(6928), pages 198-207, March.
    3. Hiroaki Kitano, 2003. "Cancer robustness: Tumour tactics," Nature, Nature, vol. 426(6963), pages 125-125, November.
    4. Diego Fernández Slezak & Cecilia Suárez & Guillermo A Cecchi & Guillermo Marshall & Gustavo Stolovitzky, 2010. "When the Optimal Is Not the Best: Parameter Estimation in Complex Biological Models," PLOS ONE, Public Library of Science, vol. 5(10), pages 1-10, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Catherine Tétard-Jones & Angharad M R Gatehouse & Julia Cooper & Carlo Leifert & Steven Rushton, 2014. "Modelling Pathways to Rubisco Degradation: A Structural Equation Network Modelling Approach," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-6, February.
    2. Wenlong He & Peng Xia & Xinan Zhang & Tianhai Tian, 2022. "Bayesian Inference Algorithm for Estimating Heterogeneity of Regulatory Mechanisms Based on Single-Cell Data," Mathematics, MDPI, vol. 10(24), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kertcher, Zack & Venkatraman, Rohan & Coslor, Erica, 2020. "Pleasingly parallel: Early cross-disciplinary work for innovation diffusion across boundaries in grid computing," Journal of Business Research, Elsevier, vol. 116(C), pages 581-594.
    2. Naomi S Hachiya, 2017. "Unfoldin, A Novel Tool for the Analysis of Protein Misfolding or Neurodegenerative Diseases," Open Access Journal of Neurology & Neurosurgery, Juniper Publishers Inc., vol. 6(3), pages 40-44, October.
    3. Alexander Kaever & Manuel Landesfeind & Kirstin Feussner & Burkhard Morgenstern & Ivo Feussner & Peter Meinicke, 2014. "Meta-Analysis of Pathway Enrichment: Combining Independent and Dependent Omics Data Sets," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-12, February.
    4. Dayle L Sampson & Tony J Parker & Zee Upton & Cameron P Hurst, 2011. "A Comparison of Methods for Classifying Clinical Samples Based on Proteomics Data: A Case Study for Statistical and Machine Learning Approaches," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-11, September.
    5. Jiang Tan & Hui-Zhen Fu & Yuh-Shan Ho, 2014. "A bibliometric analysis of research on proteomics in Science Citation Index Expanded," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 1473-1490, February.
    6. Jacques Colinge & Keiryn L Bennett, 2007. "Introduction to Computational Proteomics," PLOS Computational Biology, Public Library of Science, vol. 3(7), pages 1-10, July.
    7. Guler, Arzu Tugce & Waaijer, Cathelijn J.F. & Mohammed, Yassene & Palmblad, Magnus, 2016. "Automating bibliometric analyses using Taverna scientific workflows: A tutorial on integrating Web Services," Journal of Informetrics, Elsevier, vol. 10(3), pages 830-841.
    8. Lei Xin & Rui Qiao & Xin Chen & Hieu Tran & Shengying Pan & Sahar Rabinoviz & Haibo Bian & Xianliang He & Brenton Morse & Baozhen Shan & Ming Li, 2022. "A streamlined platform for analyzing tera-scale DDA and DIA mass spectrometry data enables highly sensitive immunopeptidomics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Llanos-Pérez, J.A. & Betancourt-Mar, J.A. & Cocho, G. & Mansilla, R. & Nieto-Villar, José Manuel, 2016. "Phase transitions in tumor growth: III vascular and metastasis behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 560-568.
    10. Mertens, B.J.A. & van der Burgt, Y.E.M. & Velstra, B. & Mesker, W.E. & Tollenaar, R.A.E.M. & Deelder, A.M., 2011. "On the use of double cross-validation for the combination of proteomic mass spectral data for enhanced diagnosis and prediction," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 759-766, July.
    11. Yun Xu & Wolfgang Schrader, 2021. "Studying the Complexity of Biomass Derived Biofuels," Energies, MDPI, vol. 14(8), pages 1-13, April.
    12. Afnizanfaizal Abdullah & Safaai Deris & Mohd Saberi Mohamad & Sohail Anwar, 2013. "An Improved Swarm Optimization for Parameter Estimation and Biological Model Selection," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-16, April.
    13. Karsten Suhre & Guhan Ram Venkataraman & Harendra Guturu & Anna Halama & Nisha Stephan & Gaurav Thareja & Hina Sarwath & Khatereh Motamedchaboki & Margaret K. R. Donovan & Asim Siddiqui & Serafim Batz, 2024. "Nanoparticle enrichment mass-spectrometry proteomics identifies protein-altering variants for precise pQTL mapping," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. ?uksza Marta & Kluge Bogus?aw & Ostrowski Jerzy & Karczmarski Jakub & Gambin Anna, 2009. "Two-Stage Model-Based Clustering for Liquid Chromatography Mass Spectrometry Data Analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-36, February.
    15. Andreas Wagner, 2015. "Causal Drift, Robust Signaling, and Complex Disease," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-29, March.
    16. Guerra, A. & Rodriguez, D.J. & Montero, S. & Betancourt-Mar, J.A. & Martin, R.R. & Silva, E. & Bizzarri, M. & Cocho, G. & Mansilla, R. & Nieto-Villar, J.M., 2018. "Phase transitions in tumor growth VI: Epithelial–Mesenchymal transition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 208-215.
    17. Patrick Leopold Rüther & Immanuel Mirnes Husic & Pernille Bangsgaard & Kristian Murphy Gregersen & Pernille Pantmann & Milena Carvalho & Ricardo Miguel Godinho & Lukas Friedl & João Cascalheira & Albe, 2022. "SPIN enables high throughput species identification of archaeological bone by proteomics," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    18. Jinfeng Zou & Guini Hong & Xinwu Guo & Lin Zhang & Chen Yao & Jing Wang & Zheng Guo, 2011. "Reproducible Cancer Biomarker Discovery in SELDI-TOF MS Using Different Pre-Processing Algorithms," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-9, October.
    19. Afnizanfaizal Abdullah & Safaai Deris & Sohail Anwar & Satya N V Arjunan, 2013. "An Evolutionary Firefly Algorithm for the Estimation of Nonlinear Biological Model Parameters," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-16, March.
    20. Ling Li & Mingming Niu & Alyssa Erickson & Jie Luo & Kincaid Rowbotham & Kai Guo & He Huang & Yuxin Li & Yi Jiang & Junguk Hur & Chunyu Liu & Junmin Peng & Xusheng Wang, 2022. "SMAP is a pipeline for sample matching in proteogenomics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0042230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.