IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v12y2013i4p529-543n8.html
   My bibliography  Save this article

Simple estimators of false discovery rates given as few as one or two p-values without strong parametric assumptions

Author

Listed:
  • Bickel David R.

    (Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada)

Abstract

Multiple comparison procedures that control a family-wise error rate or false discovery rate provide an achieved error rate as the adjusted p-value or q-value for each hypothesis tested. However, since achieved error rates are not understood as probabilities that the null hypotheses are true, empirical Bayes methods have been employed to estimate such posterior probabilities, called local false discovery rates (LFDRs) to emphasize that their priors are unknown and of the frequency type. The main approaches to LFDR estimation, relying either on fully parametric models to maximize likelihood or on the presence of enough hypotheses for nonparametric density estimation, lack the simplicity and generality of adjusted p-values. To begin filling the gap, this paper introduces simple methods of LFDR estimation with proven asymptotic conservatism without assuming the parameter distribution is in a parametric family. Simulations indicate that they remain conservative even for very small numbers of hypotheses. One of the proposed procedures enables interpreting the original FDR control rule in terms of LFDR estimation, thereby facilitating practical use of the former. The most conservative of the new procedures is applied to measured abundance levels of 20 proteins.

Suggested Citation

  • Bickel David R., 2013. "Simple estimators of false discovery rates given as few as one or two p-values without strong parametric assumptions," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(4), pages 529-543, August.
  • Handle: RePEc:bpj:sagmbi:v:12:y:2013:i:4:p:529-543:n:8
    DOI: 10.1515/sagmb-2013-0003
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/sagmb-2013-0003
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/sagmb-2013-0003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abadir, Karim M., 2005. "The Mean-Median-Mode Inequality: Counterexamples," Econometric Theory, Cambridge University Press, vol. 21(2), pages 477-482, April.
    2. Alice Whittemore, 2007. "A Bayesian False Discovery Rate for Multiple Testing," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(1), pages 1-9.
    3. Jeffrey S. Morris & Philip J. Brown & Richard C. Herrick & Keith A. Baggerly & Kevin R. Coombes, 2008. "Bayesian Analysis of Mass Spectrometry Proteomic Data Using Wavelet-Based Functional Mixed Models," Biometrics, The International Biometric Society, vol. 64(2), pages 479-489, June.
    4. Efron B. & Tibshirani R. & Storey J.D. & Tusher V., 2001. "Empirical Bayes Analysis of a Microarray Experiment," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1151-1160, December.
    5. David R. Bickel, 2011. "Estimating the Null Distribution to Adjust Observed Confidence Levels for Genome-Scale Screening," Biometrics, The International Biometric Society, vol. 67(2), pages 363-370, June.
    6. John D. Storey, 2002. "A direct approach to false discovery rates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 479-498, August.
    7. Efron, Bradley, 2010. "Correlated z-Values and the Accuracy of Large-Scale Statistical Estimates," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1042-1055.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoquan Wen, 2017. "Robust Bayesian FDR Control Using Bayes Factors, with Applications to Multi-tissue eQTL Discovery," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 28-49, June.
    2. Youngchao Ge & Sandrine Dudoit & Terence Speed, 2003. "Resampling-based multiple testing for microarray data analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(1), pages 1-77, June.
    3. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
    4. Dørum Guro & Snipen Lars & Solheim Margrete & Saebo Solve, 2011. "Smoothing Gene Expression Data with Network Information Improves Consistency of Regulated Genes," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-26, August.
    5. Jianqing Fan & Xu Han, 2017. "Estimation of the false discovery proportion with unknown dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1143-1164, September.
    6. Kline, Patrick & Walters, Christopher, 2019. "Audits as Evidence: Experiments, Ensembles, and Enforcement," Institute for Research on Labor and Employment, Working Paper Series qt3z72m9kn, Institute of Industrial Relations, UC Berkeley.
    7. Alejandro Ochoa & John D Storey & Manuel Llinás & Mona Singh, 2015. "Beyond the E-Value: Stratified Statistics for Protein Domain Prediction," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-21, November.
    8. E. M. Conlon & B. L. Postier & B. A. Methe & K. P. Nevin & D. R. Lovley, 2009. "Hierarchical Bayesian meta-analysis models for cross-platform microarray studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(10), pages 1067-1085.
    9. Izmirlian, Grant, 2020. "Strong consistency and asymptotic normality for quantities related to the Benjamini–Hochberg false discovery rate procedure," Statistics & Probability Letters, Elsevier, vol. 160(C).
    10. Chen, Xiongzhi, 2019. "Uniformly consistently estimating the proportion of false null hypotheses via Lebesgue–Stieltjes integral equations," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 724-744.
    11. Cipolli III, William & Hanson, Timothy & McLain, Alexander C., 2016. "Bayesian nonparametric multiple testing," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 64-79.
    12. Guo Wenge & Peddada Shyamal, 2008. "Adaptive Choice of the Number of Bootstrap Samples in Large Scale Multiple Testing," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-21, March.
    13. Zehetmayer Sonja & Graf Alexandra C. & Posch Martin, 2015. "Sample size reassessment for a two-stage design controlling the false discovery rate," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(5), pages 429-442, November.
    14. Alessio Farcomeni, 2006. "More Powerful Control of the False Discovery Rate Under Dependence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(1), pages 43-73, May.
    15. Ang Li & Rina Foygel Barber, 2017. "Accumulation Tests for FDR Control in Ordered Hypothesis Testing," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 837-849, April.
    16. Patrick Kline & Christopher Walters, 2021. "Reasonable Doubt: Experimental Detection of Job‐Level Employment Discrimination," Econometrica, Econometric Society, vol. 89(2), pages 765-792, March.
    17. Bickel David R., 2012. "Empirical Bayes Interval Estimates that are Conditionally Equal to Unadjusted Confidence Intervals or to Default Prior Credibility Intervals," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-34, February.
    18. Nik Tuzov & Frederi Viens, 2011. "Mutual fund performance: false discoveries, bias, and power," Annals of Finance, Springer, vol. 7(2), pages 137-169, May.
    19. Leek Jeffrey T & Storey John D., 2011. "The Joint Null Criterion for Multiple Hypothesis Tests," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-22, June.
    20. Debashis Ghosh & Wei Chen & Trivellore Raghuanthan, 2004. "The false discovery rate: a variable selection perspective," The University of Michigan Department of Biostatistics Working Paper Series 1040, Berkeley Electronic Press.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:12:y:2013:i:4:p:529-543:n:8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.