IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v34y2007i1p1-9.html
   My bibliography  Save this article

A Bayesian False Discovery Rate for Multiple Testing

Author

Listed:
  • Alice Whittemore

Abstract

Case-control studies of genetic polymorphisms and gene-environment interactions are reporting large numbers of statistically significant associations, many of which are likely to be spurious. This problem reflects the low prior probability that any one null hypothesis is false, and the large number of test results reported for a given study. In a Bayesian approach to the low prior probabilities, Wacholder et al. (2004) suggest supplementing the p-value for a hypothesis with its posterior probability given the study data. In a frequentist approach to the test multiplicity problem, Benjamini & Hochberg (1995) propose a hypothesis-rejection rule that provides greater statistical power by controlling the false discovery rate rather than the family-wise error rate controlled by the Bonferroni correction. This paper defines a Bayes false discovery rate and proposes a Bayes-based rejection rule for controlling it. The method, which combines the Bayesian approach of Wacholder et al. with the frequentist approach of Benjamini & Hochberg, is used to evaluate the associations reported in a case-control study of breast cancer risk and genetic polymorphisms of genes involved in the repair of double-strand DNA breaks.

Suggested Citation

  • Alice Whittemore, 2007. "A Bayesian False Discovery Rate for Multiple Testing," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(1), pages 1-9.
  • Handle: RePEc:taf:japsta:v:34:y:2007:i:1:p:1-9
    DOI: 10.1080/02664760600994745
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664760600994745
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664760600994745?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Wan-Yu & Lee, Wen-Chung, 2011. "Floating prioritized subset analysis: A powerful method to detect differentially expressed genes," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 903-913, January.
    2. Bickel David R., 2013. "Simple estimators of false discovery rates given as few as one or two p-values without strong parametric assumptions," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(4), pages 529-543, August.
    3. Xiaoquan Wen, 2017. "Robust Bayesian FDR Control Using Bayes Factors, with Applications to Multi-tissue eQTL Discovery," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 28-49, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:34:y:2007:i:1:p:1-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.