IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v8y2009i1n34.html
   My bibliography  Save this article

Rotation Testing in Gene Set Enrichment Analysis for Small Direct Comparison Experiments

Author

Listed:
  • Dørum Guro

    (Norwegian University of Life Sciences)

  • Snipen Lars

    (Norwegian University of Life Sciences)

  • Solheim Margrete

    (Norwegian University of Life Sciences)

  • Sæbø Solve

    (Norwegian University of Life Sciences)

Abstract

Gene Set Enrichment Analysis (GSEA) is a method for analysing gene expression data with a focus on a priori defined gene sets. The permutation test generally used in GSEA for testing the significance of gene set enrichment involves permutation of a phenotype vector and is developed for data from an indirect comparison design, i.e. unpaired data. In some studies the samples representing two phenotypes are paired, e.g. samples taken from a patient before and after treatment, or if samples representing two phenotypes are hybridised to the same two-channel array (direct comparison design). In this paper we will focus on data from direct comparison experiments, but the methods can be applied to paired data in general. For these types of data, a standard permutation test for paired data that randomly re-signs samples can be used. However, if the sample size is very small, which is often the case for a direct comparison design, a permutation test will give very imprecise estimates of the p-values. Here we propose using a rotation test rather than a permutation test for estimation of significance in GSEA of direct comparison data with a limited number of samples. Our proposed rotation test makes GSEA applicable to direct comparison data with few samples, by depending on rotations of the data instead of permutations. The rotation test is a generalisation of the permutation test, and can in addition be used on indirect comparison data and for testing significance of other types of test statistics outside the GSEA framework.

Suggested Citation

  • Dørum Guro & Snipen Lars & Solheim Margrete & Sæbø Solve, 2009. "Rotation Testing in Gene Set Enrichment Analysis for Small Direct Comparison Experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-26, July.
  • Handle: RePEc:bpj:sagmbi:v:8:y:2009:i:1:n:34
    DOI: 10.2202/1544-6115.1418
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1544-6115.1418
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1544-6115.1418?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Smyth Gordon K, 2004. "Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 3(1), pages 1-28, February.
    2. J. P. Royston, 1982. "The W Test for Normality," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 31(2), pages 176-180, June.
    3. Efron B. & Tibshirani R. & Storey J.D. & Tusher V., 2001. "Empirical Bayes Analysis of a Microarray Experiment," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1151-1160, December.
    4. John D. Storey, 2002. "A direct approach to false discovery rates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 479-498, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Phipson Belinda & Smyth Gordon K, 2010. "Permutation P-values Should Never Be Zero: Calculating Exact P-values When Permutations Are Randomly Drawn," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-16, October.
    2. Dørum Guro & Snipen Lars & Solheim Margrete & Saebo Solve, 2011. "Smoothing Gene Expression Data with Network Information Improves Consistency of Regulated Genes," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-26, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leek Jeffrey T & Storey John D., 2011. "The Joint Null Criterion for Multiple Hypothesis Tests," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-22, June.
    2. Hwang J.T. Gene & Liu Peng, 2010. "Optimal Tests Shrinking Both Means and Variances Applicable to Microarray Data Analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-35, October.
    3. Ji Tieming & Liu Peng & Nettleton Dan, 2012. "Borrowing Information Across Genes and Experiments for Improved Error Variance Estimation in Microarray Data Analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-29, May.
    4. Youngchao Ge & Sandrine Dudoit & Terence Speed, 2003. "Resampling-based multiple testing for microarray data analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(1), pages 1-77, June.
    5. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
    6. Hossain, Ahmed & Beyene, Joseph & Willan, Andrew R. & Hu, Pingzhao, 2009. "A flexible approximate likelihood ratio test for detecting differential expression in microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3685-3695, August.
    7. Dørum Guro & Snipen Lars & Solheim Margrete & Saebo Solve, 2011. "Smoothing Gene Expression Data with Network Information Improves Consistency of Regulated Genes," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-26, August.
    8. Yu Lianbo & Gulati Parul & Fernandez Soledad & Pennell Michael & Kirschner Lawrence & Jarjoura David, 2011. "Fully Moderated T-statistic for Small Sample Size Gene Expression Arrays," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-22, September.
    9. Santu Ghosh & Alan M. Polansky, 2022. "Large-Scale Simultaneous Testing Using Kernel Density Estimation," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 808-843, August.
    10. Ahmed Hossain & Hafiz T.A. Khan, 2016. "Identification of genomic markers correlated with sensitivity in solid tumors to Dasatinib using sparse principal components," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(14), pages 2538-2549, October.
    11. Xiaoquan Wen, 2017. "Robust Bayesian FDR Control Using Bayes Factors, with Applications to Multi-tissue eQTL Discovery," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 28-49, June.
    12. Kline, Patrick & Walters, Christopher, 2019. "Audits as Evidence: Experiments, Ensembles, and Enforcement," Institute for Research on Labor and Employment, Working Paper Series qt3z72m9kn, Institute of Industrial Relations, UC Berkeley.
    13. Alejandro Ochoa & John D Storey & Manuel Llinás & Mona Singh, 2015. "Beyond the E-Value: Stratified Statistics for Protein Domain Prediction," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-21, November.
    14. E. M. Conlon & B. L. Postier & B. A. Methe & K. P. Nevin & D. R. Lovley, 2009. "Hierarchical Bayesian meta-analysis models for cross-platform microarray studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(10), pages 1067-1085.
    15. Izmirlian, Grant, 2020. "Strong consistency and asymptotic normality for quantities related to the Benjamini–Hochberg false discovery rate procedure," Statistics & Probability Letters, Elsevier, vol. 160(C).
    16. Chen, Xiongzhi, 2019. "Uniformly consistently estimating the proportion of false null hypotheses via Lebesgue–Stieltjes integral equations," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 724-744.
    17. Hirakawa, Akihiro & Hamada, Chikuma & Yoshimura, Isao, 2011. "Sample size calculation for a regularized t-statistic in microarray experiments," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 870-875, July.
    18. Cipolli III, William & Hanson, Timothy & McLain, Alexander C., 2016. "Bayesian nonparametric multiple testing," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 64-79.
    19. Guo Wenge & Peddada Shyamal, 2008. "Adaptive Choice of the Number of Bootstrap Samples in Large Scale Multiple Testing," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-21, March.
    20. Dazard, Jean-Eudes & Sunil Rao, J., 2012. "Joint adaptive mean–variance regularization and variance stabilization of high dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2317-2333.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:8:y:2009:i:1:n:34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.