IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002053.html
   My bibliography  Save this article

Pathway Analysis of Expression Data: Deciphering Functional Building Blocks of Complex Diseases

Author

Listed:
  • Frank Emmert-Streib
  • Galina V Glazko

Abstract

No abstract is available for this item.

Suggested Citation

  • Frank Emmert-Streib & Galina V Glazko, 2011. "Pathway Analysis of Expression Data: Deciphering Functional Building Blocks of Complex Diseases," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-6, May.
  • Handle: RePEc:plo:pcbi00:1002053
    DOI: 10.1371/journal.pcbi.1002053
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002053
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002053&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qiu Xing & Klebanov Lev & Yakovlev Andrei, 2005. "Correlation Between Gene Expression Levels and Limitations of the Empirical Bayes Methodology for Finding Differentially Expressed Genes," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 4(1), pages 1-32, November.
    2. Eric E. Schadt, 2009. "Molecular networks as sensors and drivers of common human diseases," Nature, Nature, vol. 461(7261), pages 218-223, September.
    3. van der Laan Mark J. & Dudoit Sandrine & Pollard Katherine S., 2004. "Augmentation Procedures for Control of the Generalized Family-Wise Error Rate and Tail Probabilities for the Proportion of False Positives," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 3(1), pages 1-27, June.
    4. Mark van der Laan & Sandrine Dudoit & Katherine Pollard, 2004. "Multiple Testing. Part III. Procedures for Control of the Generalized Family-Wise Error Rate and Proportion of False Positives," U.C. Berkeley Division of Biostatistics Working Paper Series 1140, Berkeley Electronic Press.
    5. Efron B. & Tibshirani R. & Storey J.D. & Tusher V., 2001. "Empirical Bayes Analysis of a Microarray Experiment," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1151-1160, December.
    6. Shojaie Ali & Michailidis George, 2010. "Network Enrichment Analysis in Complex Experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-36, May.
    7. Mark Reimers, 2010. "Making Informed Choices about Microarray Data Analysis," PLOS Computational Biology, Public Library of Science, vol. 6(5), pages 1-7, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alin Tomoiaga & Peter Westfall & Michele Donato & Sorin Draghici & Sonia Hassan & Roberto Romero & Paola Tellaroli, 2016. "Pathway crosstalk effects: shrinkage and disentanglement using a Bayesian hierarchical model," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(2), pages 374-394, October.
    2. Ryu Duchwan & Xu Hongyan & George Varghese & Su Shaoyong & Wang Xiaoling & Shi Huidong & Podolsky Robert H., 2016. "Differential methylation tests of regulatory regions," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(3), pages 237-251, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo Wenge & Peddada Shyamal, 2008. "Adaptive Choice of the Number of Bootstrap Samples in Large Scale Multiple Testing," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-21, March.
    2. Montazeri Zahra & Yanofsky Corey M. & Bickel David R., 2010. "Shrinkage Estimation of Effect Sizes as an Alternative to Hypothesis Testing Followed by Estimation in High-Dimensional Biology: Applications to Differential Gene Expression," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-33, June.
    3. Pallavi Basu & Luella Fu & Alessio Saretto & Wenguang Sun, 2021. "Empirical Bayes Control of the False Discovery Exceedance," Working Papers 2115, Federal Reserve Bank of Dallas.
    4. Djalel-Eddine Meskaldji & Dimitri Van De Ville & Jean-Philippe Thiran & Stephan Morgenthaler, 2020. "A comprehensive error rate for multiple testing," Statistical Papers, Springer, vol. 61(5), pages 1859-1874, October.
    5. van der Laan Mark J. & Hubbard Alan E., 2006. "Quantile-Function Based Null Distribution in Resampling Based Multiple Testing," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 5(1), pages 1-30, May.
    6. Dørum Guro & Snipen Lars & Solheim Margrete & Saebo Solve, 2011. "Smoothing Gene Expression Data with Network Information Improves Consistency of Regulated Genes," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-26, August.
    7. G�nther Fink & Margaret McConnell & Sebastian Vollmer, 2014. "Testing for heterogeneous treatment effects in experimental data: false discovery risks and correction procedures," Journal of Development Effectiveness, Taylor & Francis Journals, vol. 6(1), pages 44-57, January.
    8. Irene Castro-Conde & Jacobo Uña-Álvarez, 2015. "Power, FDR and conservativeness of BB-SGoF method," Computational Statistics, Springer, vol. 30(4), pages 1143-1161, December.
    9. Joseph Romano & Azeem Shaikh & Michael Wolf, 2008. "Control of the false discovery rate under dependence using the bootstrap and subsampling," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(3), pages 417-442, November.
    10. Wang, Li & Xu, Xingzhong, 2012. "Step-up procedure controlling generalized family-wise error rate," Statistics & Probability Letters, Elsevier, vol. 82(4), pages 775-782.
    11. Birkner Merrill D. & Hubbard Alan E. & van der Laan Mark J. & Skibola Christine F. & Hegedus Christine M. & Smith Martyn T., 2006. "Issues of Processing and Multiple Testing of SELDI-TOF MS Proteomic Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 5(1), pages 1-24, April.
    12. Christina C. Bartenschlager & Michael Krapp, 2015. "Theorie und Methoden multipler statistischer Vergleiche," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 9(2), pages 107-129, November.
    13. Gordon, Alexander & Chen, Linlin & Glazko, Galina & Yakovlev, Andrei, 2009. "Balancing type one and two errors in multiple testing for differential expression of genes," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1622-1629, March.
    14. Gordon, Alexander Y., 2009. "Inequalities between generalized familywise error rates of a multiple testing procedure," Statistics & Probability Letters, Elsevier, vol. 79(19), pages 1996-2004, October.
    15. Joseph P. Romano & Azeem M. Shaikh & Michael Wolf, 2010. "Hypothesis Testing in Econometrics," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 75-104, September.
    16. Somerville, Paul N. & Hemmelmann, Claudia, 2008. "Step-up and step-down procedures controlling the number and proportion of false positives," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1323-1334, January.
    17. Merrill Birkner & Sandra Sinisi & Mark van der Laan, 2004. "Multiple Testing and Data Adaptive Regression: An Application to HIV-1 Sequence Data," U.C. Berkeley Division of Biostatistics Working Paper Series 1161, Berkeley Electronic Press.
    18. Bickel David R., 2012. "Empirical Bayes Interval Estimates that are Conditionally Equal to Unadjusted Confidence Intervals or to Default Prior Credibility Intervals," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-34, February.
    19. Sairam Rayaprolu & Zhiyi Chi, 2021. "False Discovery Variance Reduction in Large Scale Simultaneous Hypothesis Tests," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 711-733, September.
    20. Mathur, Maya B & VanderWeele, Tyler, 2018. "Statistical methods for evidence synthesis," Thesis Commons kd6ja, Center for Open Science.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.