IDEAS home Printed from https://ideas.repec.org/a/bpj/mcmeap/v8y2002i3p221-236n1.html
   My bibliography  Save this article

Sharp estimates for the hitting probability on time-dependent barriers for a Brownian Motion. Weak approximation of a Brownian motion killed on time-dependent barriers

Author

Listed:
  • Caramellino Lucia
  • Pacchiarotti Barbara

Abstract

No abstract is available for this item.

Suggested Citation

  • Caramellino Lucia & Pacchiarotti Barbara, 2002. "Sharp estimates for the hitting probability on time-dependent barriers for a Brownian Motion. Weak approximation of a Brownian motion killed on time-dependent barriers," Monte Carlo Methods and Applications, De Gruyter, vol. 8(3), pages 221-236, December.
  • Handle: RePEc:bpj:mcmeap:v:8:y:2002:i:3:p:221-236:n:1
    DOI: 10.1515/mcma.2002.8.3.221
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/mcma.2002.8.3.221
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/mcma.2002.8.3.221?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Naoto Kunitomo & Masayuki Ikeda, 1992. "Pricing Options With Curved Boundaries1," Mathematical Finance, Wiley Blackwell, vol. 2(4), pages 275-298, October.
    2. Gobet, Emmanuel, 2000. "Weak approximation of killed diffusion using Euler schemes," Stochastic Processes and their Applications, Elsevier, vol. 87(2), pages 167-197, June.
    3. Hélyette Geman & Marc Yor, 1996. "Pricing And Hedging Double‐Barrier Options: A Probabilistic Approach," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 365-378, October.
    4. Mark Broadie & Paul Glasserman & Steven Kou, 1997. "A Continuity Correction for Discrete Barrier Options," Mathematical Finance, Wiley Blackwell, vol. 7(4), pages 325-349, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zvan, R. & Vetzal, K. R. & Forsyth, P. A., 2000. "PDE methods for pricing barrier options," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1563-1590, October.
    2. Rahman Farnoosh & Hamidreza Rezazadeh & Amirhossein Sobhani & M. Hossein Beheshti, 2016. "A Numerical Method for Discrete Single Barrier Option Pricing with Time-Dependent Parameters," Computational Economics, Springer;Society for Computational Economics, vol. 48(1), pages 131-145, June.
    3. Lian, Guanghua & Zhu, Song-Ping & Elliott, Robert J. & Cui, Zhenyu, 2017. "Semi-analytical valuation for discrete barrier options under time-dependent Lévy processes," Journal of Banking & Finance, Elsevier, vol. 75(C), pages 167-183.
    4. Fusai, Gianluca & Recchioni, Maria Cristina, 2007. "Analysis of quadrature methods for pricing discrete barrier options," Journal of Economic Dynamics and Control, Elsevier, vol. 31(3), pages 826-860, March.
    5. Jun, Doobae & Ku, Hyejin, 2015. "Static hedging of chained-type barrier options," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 317-327.
    6. Fernández Lexuri & Hieber Peter & Scherer Matthias, 2013. "Double-barrier first-passage times of jump-diffusion processes," Monte Carlo Methods and Applications, De Gruyter, vol. 19(2), pages 107-141, July.
    7. Kontosakos, Vasileios E. & Mendonca, Keegan & Pantelous, Athanasios A. & Zuev, Konstantin M., 2021. "Pricing discretely-monitored double barrier options with small probabilities of execution," European Journal of Operational Research, Elsevier, vol. 290(1), pages 313-330.
    8. Lee, Hangsuck & Ko, Bangwon & Lee, Minha, 2023. "The pricing and static hedging of multi-step double barrier options," Finance Research Letters, Elsevier, vol. 55(PA).
    9. Jos� Carlos Dias & João Pedro Vidal Nunes & João Pedro Ruas, 2015. "Pricing and static hedging of European-style double barrier options under the jump to default extended CEV model," Quantitative Finance, Taylor & Francis Journals, vol. 15(12), pages 1995-2010, December.
    10. Gregor Dorfleitner & Paul Schneider & Kurt Hawlitschek & Arne Buch, 2008. "Pricing options with Green's functions when volatility, interest rate and barriers depend on time," Quantitative Finance, Taylor & Francis Journals, vol. 8(2), pages 119-133.
    11. Antoon Pelsser, "undated". "Pricing Double Barrier Options: An Analytical Approach," Computing in Economics and Finance 1997 130, Society for Computational Economics.
    12. repec:dau:papers:123456789/5374 is not listed on IDEAS
    13. Wai Man Tse & Leong Kwan Li & Kai Wang Ng, 2001. "Pricing Discrete Barrier and Hindsight Options with the Tridiagonal Probability Algorithm," Management Science, INFORMS, vol. 47(3), pages 383-393, March.
    14. Pavel V. Shevchenko & Pierre Del Moral, 2014. "Valuation of Barrier Options using Sequential Monte Carlo," Papers 1405.5294, arXiv.org, revised Jul 2015.
    15. Zhang, Jiayi & Zhou, Ke, 2024. "Analytical valuation of vulnerable chained options," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).
    16. Lee, Hangsuck & Jeong, Himchan & Lee, Minha, 2022. "Multi-step double barrier options," Finance Research Letters, Elsevier, vol. 47(PA).
    17. Bernard, Carole & Le Courtois, Olivier & Quittard-Pinon, François, 2008. "Pricing derivatives with barriers in a stochastic interest rate environment," Journal of Economic Dynamics and Control, Elsevier, vol. 32(9), pages 2903-2938, September.
    18. Yan Dolinsky & Yuri Kifer, 2009. "Binomial Approximations for Barrier Options of Israeli Style," Papers 0907.4136, arXiv.org.
    19. U Hou Lok & Yuh‐Dauh Lyuu, 2020. "Efficient trinomial trees for local‐volatility models in pricing double‐barrier options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(4), pages 556-574, April.
    20. Yongsik Kim & Hyeong-Ohk Bae & Hyeng Keun Koo, 2014. "Option pricing and Greeks via a moving least square meshfree method," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1753-1764, October.
    21. Marianito R. Rodrigo, 2020. "Pricing of Barrier Options on Underlying Assets with Jump-Diffusion Dynamics: A Mellin Transform Approach," Mathematics, MDPI, vol. 8(8), pages 1-20, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:8:y:2002:i:3:p:221-236:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.