IDEAS home Printed from https://ideas.repec.org/a/bpj/mcmeap/v16y2010i3-4p343-359n13.html
   My bibliography  Save this article

Stochastic iterative projection methods for large linear systems

Author

Listed:
  • Sabelfeld Karl

    (Institute of Computational Mathematics and Mathem. Geophysics, Russian Acad. Sci., Lavrentieva str., 6, 630090 Novosibirsk, Russia. E-mail:)

  • Loshchina Nadja

    (Novosibirsk State University, Pirogova str., 2, 630090 Novosibirsk, Russia. E-mail:)

Abstract

We suggest a randomized version of the projection methods belonging to the class of a “row-action” methods which work well both for systems with quadratic nonsingular matrices and for overdetermined systems. These methods belong to a type known as Projection on Convex Sets methods. Here we present a method beyond the conventional Markov chain based Neumann–Ulam scheme. The main idea is in a random choice of blocks of rows in the projection method so that in average, the convergence is improved compared to the conventional periodic choice of the rows. We suggest an acceleration of the row projection method by using the Johnson–Lindenstrauss (J–L) theorem to find, among the randomly chosen rows, in a sense an optimal row. We extend this randomized method for solving linear systems coupled with systems of linear inequalities. Applied to finite-difference approximations of boundary value problems, the method appears to be an extremely efficient Random Walk algorithm whose convergence is exponential, and the cost does not depend on the dimension of the matrix. In addition, the algorithm calculates the solution in all grid points, and is easily parallelizable.

Suggested Citation

  • Sabelfeld Karl & Loshchina Nadja, 2010. "Stochastic iterative projection methods for large linear systems," Monte Carlo Methods and Applications, De Gruyter, vol. 16(3-4), pages 343-359, January.
  • Handle: RePEc:bpj:mcmeap:v:16:y:2010:i:3-4:p:343-359:n:13
    DOI: 10.1515/mcma.2010.020
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/mcma.2010.020
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/mcma.2010.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sabelfeld K. & Mozartova N., 2009. "Sparsified Randomization Algorithms for large systems of linear equations and a new version of the Random Walk on Boundary method," Monte Carlo Methods and Applications, De Gruyter, vol. 15(3), pages 257-284, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sabelfeld, K.K. & Mozartova, N.S., 2011. "Sparsified Randomization algorithms for low rank approximations and applications to integral equations and inhomogeneous random field simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(2), pages 295-317.
    2. Sabelfeld, Karl K., 2018. "Stochastic projection methods and applications to some nonlinear inverse problems of phase retrieving," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 143(C), pages 169-175.
    3. Sabelfeld Karl K., 2016. "Splitting and survival probabilities in stochastic random walk methods and applications," Monte Carlo Methods and Applications, De Gruyter, vol. 22(1), pages 55-72, March.
    4. Sabelfeld Karl & Mozartova Nadezhda, 2012. "Stochastic boundary collocation and spectral methods for solving PDEs," Monte Carlo Methods and Applications, De Gruyter, vol. 18(3), pages 217-263, September.
    5. Grigoriu Mircea, 2014. "An efficient Monte Carlo solution for problems with random matrices," Monte Carlo Methods and Applications, De Gruyter, vol. 20(2), pages 121-136, June.
    6. Sabelfeld Karl K., 2016. "Vector Monte Carlo stochastic matrix-based algorithms for large linear systems," Monte Carlo Methods and Applications, De Gruyter, vol. 22(3), pages 259-264, September.
    7. Sabelfeld, Karl K., 2018. "A random walk on spheres based kinetic Monte Carlo method for simulation of the fluctuation-limited bimolecular reactions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 143(C), pages 46-56.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:16:y:2010:i:3-4:p:343-359:n:13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.