IDEAS home Printed from https://ideas.repec.org/a/bpj/mcmeap/v15y2009i3p173-210n1.html
   My bibliography  Save this article

Computing VaR and CVaR using stochastic approximation and adaptive unconstrained importance sampling

Author

Listed:
  • Bardou O.

    (Laboratoire de Probabilités et Modèles aléatoires, UMR 7599, Université Pierre et Marie Curie and GDF Suez Research and Innovation Department, France. Email: olivier-aj.bardou@gdfsuez.com)

  • Frikha N.

    (Laboratoire de Probabilités et Modèles aléatoires, UMR 7599, Université Pierre et Marie Curie and GDF Suez Research and Innovation Department, France. Email: noufel-externe.frikha@gdfsuez.com)

  • Pagès G.

    (Laboratoire de Probabilités et Modèles aléatoires, UMR 7599, Université Pierre et Marie Curie, France. Email: gilles.pages@upmc.fr)

Abstract

Value-at-Risk (VaR) and Conditional-Value-at-Risk (CVaR) are two risk measures which are widely used in the practice of risk management. This paper deals with the problem of estimating both VaR and CVaR using stochastic approximation (with decreasing steps): we propose a first Robbins–Monro (RM) procedure based on Rockafellar–Uryasev's identity for the CVaR. Convergence rate of this algorithm to its target satisfies a Gaussian Central Limit Theorem. As a second step, in order to speed up the initial procedure, we propose a recursive and adaptive importance sampling (IS) procedure which induces a significant variance reduction of both VaR and CVaR procedures. This idea, which has been investigated by many authors, follows a new approach introduced in [Lemaire and Pagès, Unconstrained Recursive Importance Sampling, 2008]. Finally, to speed up the initialization phase of the IS algorithm, we replace the original confidence level of the VaR by a slowly moving risk level. We prove that the weak convergence rate of the resulting procedure is ruled by a Central Limit Theorem with minimal variance and its efficiency is illustrated on several typical energy portfolios.

Suggested Citation

  • Bardou O. & Frikha N. & Pagès G., 2009. "Computing VaR and CVaR using stochastic approximation and adaptive unconstrained importance sampling," Monte Carlo Methods and Applications, De Gruyter, vol. 15(3), pages 173-210, January.
  • Handle: RePEc:bpj:mcmeap:v:15:y:2009:i:3:p:173-210:n:1
    DOI: 10.1515/MCMA.2009.011
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/MCMA.2009.011
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/MCMA.2009.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jun Pan & Darrell Duffie, 2001. "Analytical value-at-risk with jumps and credit risk," Finance and Stochastics, Springer, vol. 5(2), pages 155-180.
    2. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 2002. "Portfolio Value‐at‐Risk with Heavy‐Tailed Risk Factors," Mathematical Finance, Wiley Blackwell, vol. 12(3), pages 239-269, July.
    3. Margrabe, William, 1978. "The Value of an Option to Exchange One Asset for Another," Journal of Finance, American Finance Association, vol. 33(1), pages 177-186, March.
    4. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Sojung & Weber, Stefan, 2022. "Simulation methods for robust risk assessment and the distorted mix approach," European Journal of Operational Research, Elsevier, vol. 298(1), pages 380-398.
    2. Daniel R. Jiang & Warren B. Powell, 2018. "Risk-Averse Approximate Dynamic Programming with Quantile-Based Risk Measures," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 554-579, May.
    3. Costa, Manon & Gadat, Sébastien & Bercu, Bernard, 2020. "Stochastic approximation algorithms for superquantiles estimation," TSE Working Papers 20-1142, Toulouse School of Economics (TSE).
    4. Sotirios Sabanis & Ying Zhang, 2020. "A fully data-driven approach to minimizing CVaR for portfolio of assets via SGLD with discontinuous updating," Papers 2007.01672, arXiv.org.
    5. Gadat, Sébastien & Costa, Manon, 2020. "Non asymptotic controls on a stochastic algorithm for superquantile approximation," TSE Working Papers 20-1149, Toulouse School of Economics (TSE).
    6. Samuel Drapeau & Michael Kupper & Antonis Papapantoleon, 2012. "A Fourier Approach to the Computation of CV@R and Optimized Certainty Equivalents," Papers 1212.6732, arXiv.org, revised Dec 2013.
    7. Sojung Kim & Stefan Weber, 2020. "Simulation Methods for Robust Risk Assessment and the Distorted Mix Approach," Papers 2009.03653, arXiv.org, revised Jan 2022.
    8. Laruelle Sophie & Pagès Gilles, 2012. "Stochastic approximation with averaging innovation applied to Finance," Monte Carlo Methods and Applications, De Gruyter, vol. 18(1), pages 1-51, January.
    9. Manon Costa & Sébastien Gadat, 2021. "Non-asymptotic study of a recursive superquantile estimation algorithm," Post-Print hal-03610477, HAL.
    10. Qiyun Pan & Eunshin Byon & Young Myoung Ko & Henry Lam, 2020. "Adaptive importance sampling for extreme quantile estimation with stochastic black box computer models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(7), pages 524-547, October.
    11. Vishwajit Hegde & Arvind S. Menon & L. A. Prashanth & Krishna Jagannathan, 2021. "Online Estimation and Optimization of Utility-Based Shortfall Risk," Papers 2111.08805, arXiv.org, revised Nov 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olivier Aj Bardou & Noufel Frikha & G. Pag`es, 2008. "Computation of VaR and CVaR using stochastic approximations and unconstrained importance sampling," Papers 0812.3381, arXiv.org, revised Dec 2010.
    2. J. Christopher Westland, 2015. "Economics of eBay’s buyer protection plan," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 1(1), pages 1-20, December.
    3. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
    4. Arismendi, Juan C. & Broda, Simon, 2017. "Multivariate elliptical truncated moments," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 29-44.
    5. Birbil, S.I. & Frenk, J.B.G. & Kaynar, B. & N. Nilay, N., 2008. "Risk measures and their applications in asset management," Econometric Institute Research Papers EI 2008-14, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    6. Siven, Johannes Vitalis & Lins, Jeffrey Todd & Szymkowiak-Have, Anna, 2009. "Value-at-Risk computation by Fourier inversion with explicit error bounds," Finance Research Letters, Elsevier, vol. 6(2), pages 95-105, June.
    7. Mohamed A. Ayadi & Hatem Ben-Ameur & Nabil Channouf & Quang Khoi Tran, 2019. "NORTA for portfolio credit risk," Annals of Operations Research, Springer, vol. 281(1), pages 99-119, October.
    8. Alessandro Ramponi, 2016. "On a Transform Method for the Efficient Computation of Conditional V@R (and V@R) with Application to Loss Models with Jumps and Stochastic Volatility," Methodology and Computing in Applied Probability, Springer, vol. 18(2), pages 575-596, June.
    9. Sadefo Kamdem, J. & Genz, A., 2008. "Approximation of multiple integrals over hyperboloids with application to a quadratic portfolio with options," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3389-3407, March.
    10. Palczewski, Andrzej & Palczewski, Jan, 2019. "Black–Litterman model for continuous distributions," European Journal of Operational Research, Elsevier, vol. 273(2), pages 708-720.
    11. Grundke, Peter, 2009. "Importance sampling for integrated market and credit portfolio models," European Journal of Operational Research, Elsevier, vol. 194(1), pages 206-226, April.
    12. Seyed Mohammad Sina Seyfi & Azin Sharifi & Hamidreza Arian, 2020. "Portfolio Risk Measurement Using a Mixture Simulation Approach," Papers 2011.07994, arXiv.org.
    13. Mark Broadie & Yiping Du & Ciamac C. Moallemi, 2011. "Efficient Risk Estimation via Nested Sequential Simulation," Management Science, INFORMS, vol. 57(6), pages 1172-1194, June.
    14. Ye, Wuyi & Zhou, Yi & Chen, Pengzhan & Wu, Bin, 2024. "A simulation-based method for estimating systemic risk measures," European Journal of Operational Research, Elsevier, vol. 313(1), pages 312-324.
    15. Steven Kou & Xianhua Peng, 2014. "On the Measurement of Economic Tail Risk," Papers 1401.4787, arXiv.org, revised Aug 2015.
    16. Roger Bowden, 2010. "Directional entropy and tail uncertainty, with applications to financial hazard," Quantitative Finance, Taylor & Francis Journals, vol. 11(3), pages 437-446.
    17. Seyfi, Seyed Mohammad Sina & Sharifi, Azin & Arian, Hamidreza, 2021. "Portfolio Value-at-Risk and expected-shortfall using an efficient simulation approach based on Gaussian Mixture Model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1056-1079.
    18. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    19. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
    20. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:15:y:2009:i:3:p:173-210:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.