IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v52y2008i7p3389-3407.html
   My bibliography  Save this article

Approximation of multiple integrals over hyperboloids with application to a quadratic portfolio with options

Author

Listed:
  • Sadefo Kamdem, J.
  • Genz, A.

Abstract

An application involving a financial quadratic portfolio, where the joint underlying log-returns follow a multivariate elliptic distribution, is considered. This motivates the need for methods for the approximation of multiple integrals over hyperboloids. Transformations are used to reduce the hyperboloid integrals to products of integrals which can be approximated with appropriate numerical methods. The application of these methods is demonstrated using some financial applications examples.

Suggested Citation

  • Sadefo Kamdem, J. & Genz, A., 2008. "Approximation of multiple integrals over hyperboloids with application to a quadratic portfolio with options," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3389-3407, March.
  • Handle: RePEc:eee:csdana:v:52:y:2008:i:7:p:3389-3407
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(07)00466-5
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Carvalho, Carlos M. & Lopes, Hedibert F., 2007. "Simulation-based sequential analysis of Markov switching stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4526-4542, May.
    2. Jules Sadefo Kamdem, 2012. "VaR and ES for linear portfolios with mixture of generalized Laplace distributions risk factors," Annals of Finance, Springer, vol. 8(1), pages 123-150, February.
    3. Jun Pan & Darrell Duffie, 2001. "Analytical value-at-risk with jumps and credit risk," Finance and Stochastics, Springer, vol. 5(2), pages 155-180.
    4. Lu, Zeng-Hua, 2006. "The numerical evaluation of the probability density function of a quadratic form in normal variables," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1986-1996, December.
    5. Jules Sadefo Kamdem, 2005. "Value-At-Risk And Expected Shortfall For Linear Portfolios With Elliptically Distributed Risk Factors," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(05), pages 537-551.
    6. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 2002. "Portfolio Value‐at‐Risk with Heavy‐Tailed Risk Factors," Mathematical Finance, Wiley Blackwell, vol. 12(3), pages 239-269, July.
    7. Pelletier, Denis, 2006. "Regime switching for dynamic correlations," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 445-473.
    8. R. Brummelhuis & A. Córdoba & M. Quintanilla & L. Seco, 2002. "Principal Component Value at Risk," Mathematical Finance, Wiley Blackwell, vol. 12(1), pages 23-43, January.
    9. Raymond BRUMMELHUIS & Jules Sadefo-Kamdem, 2009. "Var For Quadratic Portfolio'S With Generalized Laplace Distributed Returns," Working Papers 09-06, LAMETA, Universtiy of Montpellier, revised Jun 2009.
    10. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    11. Jules Sadefo Kamdem, 2007. "VaR and ES for linear portfolios with mixture of elliptic distributions risk factors," Post-Print hal-02938574, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dobrislav Dobrev∗ & Travis D. Nesmith & Dong Hwan Oh, 2017. "Accurate Evaluation of Expected Shortfall for Linear Portfolios with Elliptically Distributed Risk Factors," JRFM, MDPI, vol. 10(1), pages 1-14, February.
    2. Jules Sadefo Kamdem, 2012. "VaR and ES for linear portfolios with mixture of generalized Laplace distributions risk factors," Annals of Finance, Springer, vol. 8(1), pages 123-150, February.
    3. Mbairadjim Moussa, A. & Sadefo Kamdem, J. & Terraza, M., 2014. "Fuzzy value-at-risk and expected shortfall for portfolios with heavy-tailed returns," Economic Modelling, Elsevier, vol. 39(C), pages 247-256.
    4. Raymond BRUMMELHUIS & Jules Sadefo-Kamdem, 2009. "Var For Quadratic Portfolio'S With Generalized Laplace Distributed Returns," Working Papers 09-06, LAMETA, Universtiy of Montpellier, revised Jun 2009.
    5. Abdoul Salam Diallo & Alfred Mbairadjim Moussa, 2014. "Addressing agent specific extreme price risk in the presence of heterogeneous data sources: A food safety perspective," Working Papers 14-15, LAMETA, Universtiy of Montpellier, revised Dec 2014.
    6. Sadefo Kamdem, J., 2010. "Sharp estimates for the CDF of quadratic forms of MPE random vectors," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1755-1771, September.
    7. Sadefo Kamdem, J., 2009. "[Delta]-VaR and [Delta]-TVaR for portfolios with mixture of elliptic distributions risk factors and DCC," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 325-336, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.
    2. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    3. Monica Billio & Maddalena Cavicchioli, 2013. "�Markov Switching Models for Volatility: Filtering, Approximation and Duality�," Working Papers 2013:24, Department of Economics, University of Venice "Ca' Foscari".
    4. Dobrislav Dobrev∗ & Travis D. Nesmith & Dong Hwan Oh, 2017. "Accurate Evaluation of Expected Shortfall for Linear Portfolios with Elliptically Distributed Risk Factors," JRFM, MDPI, vol. 10(1), pages 1-14, February.
    5. Berens, Tobias & Weiß, Gregor N.F. & Wied, Dominik, 2015. "Testing for structural breaks in correlations: Does it improve Value-at-Risk forecasting?," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 135-152.
    6. Marcel Wollschlager & Rudi Schafer, 2015. "Impact of non-stationarity on estimating and modeling empirical copulas of daily stock returns," Papers 1506.08054, arXiv.org.
    7. Raymond BRUMMELHUIS & Jules Sadefo-Kamdem, 2009. "Var For Quadratic Portfolio'S With Generalized Laplace Distributed Returns," Working Papers 09-06, LAMETA, Universtiy of Montpellier, revised Jun 2009.
    8. L. Bauwens & E. Otranto, 2013. "Modeling the Dependence of Conditional Correlations on Volatility," Working Paper CRENoS 201304, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    9. Otranto, Edoardo, 2010. "Identifying financial time series with similar dynamic conditional correlation," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 1-15, January.
    10. Nektarios Aslanidis & Denise R. Osborn & Marianne Sensier, 2008. "Co-movements between US and UK stock prices: the roles of macroeconomic information and time-varying conditional correlations," Centre for Growth and Business Cycle Research Discussion Paper Series 96, Economics, The University of Manchester.
    11. J. Hambuckers & C. Heuchenne, 2017. "A robust statistical approach to select adequate error distributions for financial returns," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(1), pages 137-161, January.
    12. Bernardi, Mauro & Catania, Leopoldo, 2018. "Portfolio optimisation under flexible dynamic dependence modelling," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 1-18.
    13. Matthias R. Fengler & Helmut Herwartz & Christian Werner, 2012. "A Dynamic Copula Approach to Recovering the Index Implied Volatility Skew," Journal of Financial Econometrics, Oxford University Press, vol. 10(3), pages 457-493, June.
    14. Lorán Chollete & Andréas Heinen & Alfonso Valdesogo, 2009. "Modeling International Financial Returns with a Multivariate Regime-switching Copula," Journal of Financial Econometrics, Oxford University Press, vol. 7(4), pages 437-480, Fall.
    15. Mbairadjim Moussa, A. & Sadefo Kamdem, J. & Terraza, M., 2014. "Fuzzy value-at-risk and expected shortfall for portfolios with heavy-tailed returns," Economic Modelling, Elsevier, vol. 39(C), pages 247-256.
    16. Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2021. "A non-elliptical orthogonal GARCH model for portfolio selection under transaction costs," Journal of Banking & Finance, Elsevier, vol. 125(C).
    17. Tianyao Chen & Xue Cheng & Jingping Yang, 2019. "Common Decomposition of Correlated Brownian Motions and its Financial Applications," Papers 1907.03295, arXiv.org, revised Nov 2020.
    18. Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2019. "Regime switching dynamic correlations for asymmetric and fat-tailed conditional returns," Journal of Econometrics, Elsevier, vol. 213(2), pages 493-515.
    19. Arismendi, Juan C. & Broda, Simon, 2017. "Multivariate elliptical truncated moments," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 29-44.
    20. Luc Bauwens & Christian M. Hafner & Diane Pierret, 2013. "Multivariate Volatility Modeling Of Electricity Futures," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 743-761, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:52:y:2008:i:7:p:3389-3407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.