IDEAS home Printed from https://ideas.repec.org/a/bpj/mcmeap/v14y2008i1p29-51n2.html
   My bibliography  Save this article

Some new simulations schemes for the evaluation of Feynman–Kac representations

Author

Listed:
  • Maire Sylvain

    (ISITV, Université de Toulon et du Var, avenue G. Pompidou, BP 56, 83262 La Valette du Var CEDEX, France. Email: maire@univ-tln.fr)

  • Tanré Etienne

    (INRIA, Equipe Projet TOSCA, 2004 route des Lucioles, BP93, 06902 Sophia-Antipolis, France. Email: Etienne.Tanre@sophia.inria.fr)

Abstract

We describe new variants of the Euler scheme and of the walk on spheres method for the Monte Carlo computation of Feynman–Kac representations. We optimize these variants using quantization for both source and boundary terms. Numerical tests are given on basic examples and on Monte Carlo versions of spectral methods for the Poisson equation. We especially introduce a new stochastic spectral formulation with very good properties in terms of conditioning.

Suggested Citation

  • Maire Sylvain & Tanré Etienne, 2008. "Some new simulations schemes for the evaluation of Feynman–Kac representations," Monte Carlo Methods and Applications, De Gruyter, vol. 14(1), pages 29-51, January.
  • Handle: RePEc:bpj:mcmeap:v:14:y:2008:i:1:p:29-51:n:2
    DOI: 10.1515/MCMA.2008.002
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/MCMA.2008.002
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/MCMA.2008.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gobet, Emmanuel, 2000. "Weak approximation of killed diffusion using Euler schemes," Stochastic Processes and their Applications, Elsevier, vol. 87(2), pages 167-197, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lejay, Antoine & Maire, Sylvain, 2007. "Computing the principal eigenvalue of the Laplace operator by a stochastic method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 73(6), pages 351-363.
    2. Casella, Bruno & Roberts, Gareth O., 2011. "Exact Simulation of Jump-Diffusion Processes with Monte Carlo Applications," MPRA Paper 95217, University Library of Munich, Germany.
    3. Hoel Håkon & von Schwerin Erik & Szepessy Anders & Tempone Raúl, 2014. "Implementation and analysis of an adaptive multilevel Monte Carlo algorithm," Monte Carlo Methods and Applications, De Gruyter, vol. 20(1), pages 1-41, March.
    4. Diana Dorobantu & Yahia Salhi & Pierre-Emmanuel Thérond, 2018. "Modelling net carrying amount of shares for market consistent valuation of life insurance liabilities," Working Papers hal-01840057, HAL.
    5. Bruno Casella & Gareth O. Roberts, 2011. "Exact Simulation of Jump-Diffusion Processes with Monte Carlo Applications," Methodology and Computing in Applied Probability, Springer, vol. 13(3), pages 449-473, September.
    6. repec:hal:wpaper:hal-00400666 is not listed on IDEAS
    7. Madalina Deaconu & Samuel Herrmann, 2023. "Strong Approximation of Bessel Processes," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-24, March.
    8. Rey, Clément, 2019. "Approximation of Markov semigroups in total variation distance under an irregular setting: An application to the CIR process," Stochastic Processes and their Applications, Elsevier, vol. 129(2), pages 539-571.
    9. Bayer Christian & Szepessy Anders & Tempone Raúl, 2010. "Adaptive weak approximation of reflected and stopped diffusions," Monte Carlo Methods and Applications, De Gruyter, vol. 16(1), pages 1-67, January.
    10. Diana Dorobantu & Yahia Salhi & Pierre-E. Thérond, 2020. "Modelling Net Carrying Amount of Shares for Market Consistent Valuation of Life Insurance Liabilities," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 711-745, June.
    11. Umut Çetin & Julien Hok, 2024. "Speeding up the Euler scheme for killed diffusions," Finance and Stochastics, Springer, vol. 28(3), pages 663-707, July.
    12. Maire Sylvain & Tanré Etienne, 2013. "Monte Carlo approximations of the Neumann problem," Monte Carlo Methods and Applications, De Gruyter, vol. 19(3), pages 201-236, October.
    13. Matoussi Anis & Sabbagh Wissal, 2016. "Numerical computation for backward doubly SDEs with random terminal time," Monte Carlo Methods and Applications, De Gruyter, vol. 22(3), pages 229-258, September.
    14. Imamura Yuri & Ishigaki Yuta & Okumura Toshiki, 2014. "A numerical scheme based on semi-static hedging strategy," Monte Carlo Methods and Applications, De Gruyter, vol. 20(4), pages 223-235, December.
    15. Akahori, Jirô & Fan, Jie Yen & Imamura, Yuri, 2023. "On the convergence order of a binary tree approximation of symmetrized diffusion processes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 263-277.
    16. R'uben Sousa & Ana Bela Cruzeiro & Manuel Guerra, 2016. "Barrier Option Pricing under the 2-Hypergeometric Stochastic Volatility Model," Papers 1610.03230, arXiv.org, revised Aug 2017.
    17. Aurélien Alfonsi & Benjamin Jourdain & Arturo Kohatsu-Higa, 2014. "Pathwise optimal transport bounds between a one-dimensional diffusion and its Euler scheme," Post-Print hal-00727430, HAL.
    18. Frikha Noufel & Sagna Abass, 2012. "Quantization based recursive importance sampling," Monte Carlo Methods and Applications, De Gruyter, vol. 18(4), pages 287-326, December.
    19. Lucia Caramellino & Barbara Pacchiarotti & Simone Salvadei, 2015. "Large Deviation Approaches for the Numerical Computation of the Hitting Probability for Gaussian Processes," Methodology and Computing in Applied Probability, Springer, vol. 17(2), pages 383-401, June.
    20. Giorgia Callegaro & Abass Sagna, 2009. "An application to credit risk of a hybrid Monte Carlo-Optimal quantization method," Papers 0907.0645, arXiv.org.
    21. Huyen Pham, 2007. "Some applications and methods of large deviations in finance and insurance," Papers math/0702473, arXiv.org, revised Feb 2007.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:14:y:2008:i:1:p:29-51:n:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.