IDEAS home Printed from https://ideas.repec.org/a/bpj/jqsprt/v8y2012i3n2.html
   My bibliography  Save this article

A Comparison of the Autocorrelation and Variance of NFL Team Strengths Over Time using a Bayesian State-Space Model

Author

Listed:
  • Koopmeiners Joseph S.

    (University of Minnesota - Twin Cities)

Abstract

Professional sports leagues are motivated to promote competitive balance in order to maintain fan interest. The National Football League (NFL) has taken several steps to promote competitive balance, most notably free agency and the salary cap, which were instituted prior to the 1994 season. Previous research into competitive balance in sports focused on the variability of team strengths but ignored the year-to-year autocorrelation in team strengths. We present a Bayesian state-space model for paired comparisons that allows regression on the variance parameters. By modeling the variance parameters in a regression framework, we are able to simultaneously compare the variance and autocorrelation in team strengths over time. The autocorrelation of NFL team strengths has decreased over time while there has been little change in the variance in teams strengths since the 1970s.

Suggested Citation

  • Koopmeiners Joseph S., 2012. "A Comparison of the Autocorrelation and Variance of NFL Team Strengths Over Time using a Bayesian State-Space Model," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(3), pages 1-19, October.
  • Handle: RePEc:bpj:jqsprt:v:8:y:2012:i:3:n:2
    DOI: 10.1515/1559-0410.1422
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/1559-0410.1422
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/1559-0410.1422?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mease D., 2003. "A Penalized Maximum Likelihood Approach for the Ranking of College Football Teams Independent of Victory Margins," The American Statistician, American Statistical Association, vol. 57, pages 241-248, November.
    2. Andrew Larsen & Aju J. Fenn & Erin Leanne Spenner, 2006. "The Impact of Free Agency and the Salary Cap on Competitive Balance in the National Football League," Journal of Sports Economics, , vol. 7(4), pages 374-390, November.
    3. Mark Glickman, 2001. "Dynamic paired comparison models with stochastic variances," Journal of Applied Statistics, Taylor & Francis Journals, vol. 28(6), pages 673-689.
    4. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    5. Gajewski Byron J, 2006. "There's No Place Like Home: Estimating Intra-Conference Home Field Advantage in College Football Using a Bayesian Piecewise Linear Model," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 2(1), pages 1-26, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lenten, Liam J.A., 2011. "The extent to which unbalanced schedules cause distortions in sports league tables," Economic Modelling, Elsevier, vol. 28(1), pages 451-458.
    2. Beaudoin, David & Swartz, Tim, 2018. "A computationally intensive ranking system for paired comparison data," Operations Research Perspectives, Elsevier, vol. 5(C), pages 105-112.
    3. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    4. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    5. Jesse Elliott & Zemin Bai & Shu-Ching Hsieh & Shannon E Kelly & Li Chen & Becky Skidmore & Said Yousef & Carine Zheng & David J Stewart & George A Wells, 2020. "ALK inhibitors for non-small cell lung cancer: A systematic review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.
    6. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    7. Francois Olivier & Laval Guillaume, 2011. "Deviance Information Criteria for Model Selection in Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-25, July.
    8. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    9. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    10. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    11. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.
    12. Padilla, Juan L. & Azevedo, Caio L.N. & Lachos, Victor H., 2018. "Multidimensional multiple group IRT models with skew normal latent trait distributions," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 250-268.
    13. Svetlana V. Tishkovskaya & Paul G. Blackwell, 2021. "Bayesian estimation of heterogeneous environments from animal movement data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    14. David Macro & Jeroen Weesie, 2016. "Inequalities between Others Do Matter: Evidence from Multiplayer Dictator Games," Games, MDPI, vol. 7(2), pages 1-23, April.
    15. Tautenhahn, Susanne & Heilmeier, Hermann & Jung, Martin & Kahl, Anja & Kattge, Jens & Moffat, Antje & Wirth, Christian, 2012. "Beyond distance-invariant survival in inverse recruitment modeling: A case study in Siberian Pinus sylvestris forests," Ecological Modelling, Elsevier, vol. 233(C), pages 90-103.
    16. Julian P. T. Higgins & Simon G. Thompson & David J. Spiegelhalter, 2009. "A re‐evaluation of random‐effects meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 137-159, January.
    17. Simon Mak & Derek Bingham & Yi Lu, 2016. "A regional compound Poisson process for hurricane and tropical storm damage," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(5), pages 677-703, November.
    18. Xi, Yanhui & Peng, Hui & Qin, Yemei & Xie, Wenbiao & Chen, Xiaohong, 2015. "Bayesian analysis of heavy-tailed market microstructure model and its application in stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 117(C), pages 141-153.
    19. Huang, Zhaodong & Chien, Steven & Zhu, Wei & Zheng, Pengjun, 2022. "Scheduling wheel inspection for sustainable urban rail transit operation: A Bayesian approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    20. Jorge I. Figueroa-Zúñiga & Cristian L. Bayes & Víctor Leiva & Shuangzhe Liu, 2022. "Robust beta regression modeling with errors-in-variables: a Bayesian approach and numerical applications," Statistical Papers, Springer, vol. 63(3), pages 919-942, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jqsprt:v:8:y:2012:i:3:n:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.