IDEAS home Printed from https://ideas.repec.org/a/bpj/ijbist/v9y2013i2p161-174n10.html
   My bibliography  Save this article

Assessing the Causal Effect of Policies: An Example Using Stochastic Interventions

Author

Listed:
  • Díaz Iván

    (Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA)

  • van der Laan Mark J.

    (University of California, Berkeley, CA 94704, USA)

Abstract

Assessing the causal effect of an exposure often involves the definition of counterfactual outcomes in a hypothetical world in which the stochastic nature of the exposure is modified. Although stochastic interventions are a powerful tool to measure the causal effect of a realistic intervention that intends to alter the population distribution of an exposure, their importance to answer questions about plausible policy interventions has been obscured by the generalized use of deterministic interventions. In this article, we follow the approach described in Díaz and van der Laan (2012) to define and estimate the effect of an intervention that is expected to cause a truncation in the population distribution of the exposure. The observed data parameter that identifies the causal parameter of interest is established, as well as its efficient influence function under the non-parametric model. Inverse probability of treatment weighted (IPTW), augmented IPTW and targeted minimum loss-based estimators (TMLE) are proposed, their consistency and efficiency properties are determined. An extension to longitudinal data structures is presented and its use is demonstrated with a real data example.

Suggested Citation

  • Díaz Iván & van der Laan Mark J., 2013. "Assessing the Causal Effect of Policies: An Example Using Stochastic Interventions," The International Journal of Biostatistics, De Gruyter, vol. 9(2), pages 161-174, November.
  • Handle: RePEc:bpj:ijbist:v:9:y:2013:i:2:p:161-174:n:10
    DOI: 10.1515/ijb-2013-0014
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/ijb-2013-0014
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/ijb-2013-0014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Porter Kristin E. & Gruber Susan & van der Laan Mark J. & Sekhon Jasjeet S., 2011. "The Relative Performance of Targeted Maximum Likelihood Estimators," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-34, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noémi Kreif & Richard Grieve & Iván Díaz & David Harrison, 2015. "Evaluation of the Effect of a Continuous Treatment: A Machine Learning Approach with an Application to Treatment for Traumatic Brain Injury," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1213-1228, September.
    2. Ronald Herrera & Ursula Berger & Ondine S. Von Ehrenstein & Iván Díaz & Stella Huber & Daniel Moraga Muñoz & Katja Radon, 2017. "Estimating the Causal Impact of Proximity to Gold and Copper Mines on Respiratory Diseases in Chilean Children: An Application of Targeted Maximum Likelihood Estimation," IJERPH, MDPI, vol. 15(1), pages 1-15, December.
    3. Gilbert Peter B. & Blette Bryan S. & Hudgens Michael G. & Shepherd Bryan E., 2020. "Post-randomization Biomarker Effect Modification Analysis in an HIV Vaccine Clinical Trial," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 54-69, January.
    4. Youmi Suk, 2024. "A Within-Group Approach to Ensemble Machine Learning Methods for Causal Inference in Multilevel Studies," Journal of Educational and Behavioral Statistics, , vol. 49(1), pages 61-91, February.
    5. Susan Gruber & Mark J. van der Laan, 2013. "An Application of Targeted Maximum Likelihood Estimation to the Meta-Analysis of Safety Data," Biometrics, The International Biometric Society, vol. 69(1), pages 254-262, March.
    6. Youmi Suk & Kyung T. Han, 2024. "A Psychometric Framework for Evaluating Fairness in Algorithmic Decision Making: Differential Algorithmic Functioning," Journal of Educational and Behavioral Statistics, , vol. 49(2), pages 151-172, April.
    7. Mariela Sued & Marina Valdora & Víctor Yohai, 2020. "Robust doubly protected estimators for quantiles with missing data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 819-843, September.
    8. Lars van der Laan & Wenbo Zhang & Peter B. Gilbert, 2023. "Nonparametric estimation of the causal effect of a stochastic threshold‐based intervention," Biometrics, The International Biometric Society, vol. 79(2), pages 1014-1028, June.
    9. Sherri Rose & Sharon‐Lise Normand, 2019. "Double robust estimation for multiple unordered treatments and clustered observations: Evaluating drug‐eluting coronary artery stents," Biometrics, The International Biometric Society, vol. 75(1), pages 289-296, March.
    10. van der Laan Mark, 2017. "A Generally Efficient Targeted Minimum Loss Based Estimator based on the Highly Adaptive Lasso," The International Journal of Biostatistics, De Gruyter, vol. 13(2), pages 1-35, November.
    11. Brooks Jordan & van der Laan Mark J. & Go Alan S., 2012. "Targeted Maximum Likelihood Estimation for Prediction Calibration," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-35, October.
    12. Díaz Iván & Carone Marco & van der Laan Mark J., 2016. "Second-Order Inference for the Mean of a Variable Missing at Random," The International Journal of Biostatistics, De Gruyter, vol. 12(1), pages 333-349, May.
    13. Schnitzer Mireille E. & Lok Judith J. & Gruber Susan, 2016. "Variable Selection for Confounder Control, Flexible Modeling and Collaborative Targeted Minimum Loss-Based Estimation in Causal Inference," The International Journal of Biostatistics, De Gruyter, vol. 12(1), pages 97-115, May.
    14. Radice Rosalba & Ramsahai Roland & Grieve Richard & Kreif Noemi & Sadique Zia & Sekhon Jasjeet S., 2012. "Evaluating treatment effectiveness in patient subgroups: a comparison of propensity score methods with an automated matching approach," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-45, August.
    15. Sherri Rose & Julie Shi & Thomas G. McGuire & Sharon-Lise T. Normand, 2017. "Matching and Imputation Methods for Risk Adjustment in the Health Insurance Marketplaces," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 525-542, December.
    16. Chaffee Paul H. & van der Laan Mark J., 2012. "Targeted Maximum Likelihood Estimation for Dynamic Treatment Regimes in Sequentially Randomized Controlled Trials," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-32, June.
    17. Díaz Iván & Rosenblum Michael, 2015. "Targeted Maximum Likelihood Estimation using Exponential Families," The International Journal of Biostatistics, De Gruyter, vol. 11(2), pages 233-251, November.
    18. Stitelman Ori M. & De Gruttola Victor & van der Laan Mark J., 2012. "A General Implementation of TMLE for Longitudinal Data Applied to Causal Inference in Survival Analysis," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-39, September.
    19. Stitelman Ori M & Wester C. William & De Gruttola Victor & van der Laan Mark J., 2011. "Targeted Maximum Likelihood Estimation of Effect Modification Parameters in Survival Analysis," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-34, March.
    20. van der Laan Mark J. & Gruber Susan, 2012. "Targeted Minimum Loss Based Estimation of Causal Effects of Multiple Time Point Interventions," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-41, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:9:y:2013:i:2:p:161-174:n:10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.