IDEAS home Printed from https://ideas.repec.org/a/bpj/ijbist/v11y2015i2p233-251n2.html
   My bibliography  Save this article

Targeted Maximum Likelihood Estimation using Exponential Families

Author

Listed:
  • Díaz Iván

    (Johns Hopkins Bloomberg School of Public Health – Biostatistics, Baltimore, MD, USA)

  • Rosenblum Michael

    (Johns Hopkins Bloomberg School of Public Health – Biostatistics, Baltimore, MD, USA)

Abstract

Targeted maximum likelihood estimation (TMLE) is a general method for estimating parameters in semiparametric and nonparametric models. The key step in any TMLE implementation is constructing a sequence of least-favorable parametric models for the parameter of interest. This has been done for a variety of parameters arising in causal inference problems, by augmenting standard regression models with a “clever-covariate.” That approach requires deriving such a covariate for each new type of problem; for some problems such a covariate does not exist. To address these issues, we give a general TMLE implementation based on exponential families. This approach does not require deriving a clever-covariate, and it can be used to implement TMLE for estimating any smooth parameter in the nonparametric model. A computational advantage is that each iteration of TMLE involves estimation of a parameter in an exponential family, which is a convex optimization problem for which software implementing reliable and computationally efficient methods exists. We illustrate the method in three estimation problems, involving the mean of an outcome missing at random, the parameter of a median regression model, and the causal effect of a continuous exposure, respectively. We conduct a simulation study comparing different choices for the parametric submodel. We find that the choice of submodel can have an important impact on the behavior of the estimator in finite samples.

Suggested Citation

  • Díaz Iván & Rosenblum Michael, 2015. "Targeted Maximum Likelihood Estimation using Exponential Families," The International Journal of Biostatistics, De Gruyter, vol. 11(2), pages 233-251, November.
  • Handle: RePEc:bpj:ijbist:v:11:y:2015:i:2:p:233-251:n:2
    DOI: 10.1515/ijb-2014-0039
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/ijb-2014-0039
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/ijb-2014-0039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Porter Kristin E. & Gruber Susan & van der Laan Mark J. & Sekhon Jasjeet S., 2011. "The Relative Performance of Targeted Maximum Likelihood Estimators," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-34, August.
    2. Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
    3. Koenker, Roger & Park, Beum J., 1996. "An interior point algorithm for nonlinear quantile regression," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 265-283.
    4. Rosenblum Michael & van der Laan Mark J., 2010. "Targeted Maximum Likelihood Estimation of the Parameter of a Marginal Structural Model," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-30, April.
    5. Stitelman Ori M. & De Gruttola Victor & van der Laan Mark J., 2012. "A General Implementation of TMLE for Longitudinal Data Applied to Causal Inference in Survival Analysis," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-39, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van der Laan Mark J. & Gruber Susan, 2012. "Targeted Minimum Loss Based Estimation of Causal Effects of Multiple Time Point Interventions," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-41, May.
    2. Iván Díaz & Elizabeth Colantuoni & Daniel F. Hanley & Michael Rosenblum, 2019. "Improved precision in the analysis of randomized trials with survival outcomes, without assuming proportional hazards," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 439-468, July.
    3. Mireille E. Schnitzer & Erica E.M. Moodie & Mark J. van der Laan & Robert W. Platt & Marina B. Klein, 2014. "Modeling the impact of hepatitis C viral clearance on end-stage liver disease in an HIV co-infected cohort with targeted maximum likelihood estimation," Biometrics, The International Biometric Society, vol. 70(1), pages 144-152, March.
    4. Susan Gruber & Mark J. van der Laan, 2013. "An Application of Targeted Maximum Likelihood Estimation to the Meta-Analysis of Safety Data," Biometrics, The International Biometric Society, vol. 69(1), pages 254-262, March.
    5. Lars van der Laan & Wenbo Zhang & Peter B. Gilbert, 2023. "Nonparametric estimation of the causal effect of a stochastic threshold‐based intervention," Biometrics, The International Biometric Society, vol. 79(2), pages 1014-1028, June.
    6. Sherri Rose & Sharon‐Lise Normand, 2019. "Double robust estimation for multiple unordered treatments and clustered observations: Evaluating drug‐eluting coronary artery stents," Biometrics, The International Biometric Society, vol. 75(1), pages 289-296, March.
    7. Díaz Iván & Carone Marco & van der Laan Mark J., 2016. "Second-Order Inference for the Mean of a Variable Missing at Random," The International Journal of Biostatistics, De Gruyter, vol. 12(1), pages 333-349, May.
    8. Radice Rosalba & Ramsahai Roland & Grieve Richard & Kreif Noemi & Sadique Zia & Sekhon Jasjeet S., 2012. "Evaluating treatment effectiveness in patient subgroups: a comparison of propensity score methods with an automated matching approach," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-45, August.
    9. Stitelman Ori M. & De Gruttola Victor & van der Laan Mark J., 2012. "A General Implementation of TMLE for Longitudinal Data Applied to Causal Inference in Survival Analysis," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-39, September.
    10. Stitelman Ori M & Wester C. William & De Gruttola Victor & van der Laan Mark J., 2011. "Targeted Maximum Likelihood Estimation of Effect Modification Parameters in Survival Analysis," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-34, March.
    11. Noémi Kreif & Richard Grieve & Iván Díaz & David Harrison, 2015. "Evaluation of the Effect of a Continuous Treatment: A Machine Learning Approach with an Application to Treatment for Traumatic Brain Injury," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1213-1228, September.
    12. Tian, Maoxi & El Khoury, Rim & Alshater, Muneer M., 2023. "The nonlinear and negative tail dependence and risk spillovers between foreign exchange and stock markets in emerging economies," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 82(C).
    13. Ma, Lingjie & Koenker, Roger, 2006. "Quantile regression methods for recursive structural equation models," Journal of Econometrics, Elsevier, vol. 134(2), pages 471-506, October.
    14. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    15. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    16. Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
    17. Görg Holger & Marchal Léa, 2019. "Die Effekte deutscher Direktinvestitionen im Empfängerland vor dem Hintergrund des Leistungsbilanzüberschusses: Empirische Evidenz mit Mikrodaten für Frankreich," Perspektiven der Wirtschaftspolitik, De Gruyter, vol. 20(1), pages 53-69, June.
    18. Tran Linh & Petersen Maya & Schwab Joshua & van der Laan Mark J., 2023. "Robust variance estimation and inference for causal effect estimation," Journal of Causal Inference, De Gruyter, vol. 11(1), pages 1-27, January.
    19. Léa Marchal & Clément Nedoncelle, 2019. "Immigrants, occupations and firm export performance," Review of International Economics, Wiley Blackwell, vol. 27(5), pages 1480-1509, November.
    20. Hisaki Kono & Yasuyuki Sawada & Abu S. Shonchoy, 2016. "DVD-based Distance-learning Program for University Entrance Exams: Experimental Evidence from Rural Bangladesh," CIRJE F-Series CIRJE-F-1027, CIRJE, Faculty of Economics, University of Tokyo.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:11:y:2015:i:2:p:233-251:n:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.