IDEAS home Printed from https://ideas.repec.org/a/bpj/ijbist/v7y2011i1n25.html
   My bibliography  Save this article

Clarifying the Role of Principal Stratification in the Paired Availability Design

Author

Listed:
  • Baker Stuart G
  • Lindeman Karen S
  • Kramer Barnett S

Abstract

The paired availability design for historical controls postulated four classes corresponding to the treatment (old or new) a participant would receive if arrival occurred during either of two time periods associated with different availabilities of treatment. These classes were later extended to other settings and called principal strata. Judea Pearl asks if principal stratification is a goal or a tool and lists four interpretations of principal stratification. In the case of the paired availability design, principal stratification is a tool that falls squarely into Pearl’s interpretation of principal stratification as “an approximation to research questions concerning population averages.” We describe the paired availability design and the important role played by principal stratification in estimating the effect of receipt of treatment in a population using data on changes in availability of treatment. We discuss the assumptions and their plausibility. We also introduce the extrapolated estimate to make the generalizability assumption more plausible. By showing why the assumptions are plausible we show why the paired availability design, which includes principal stratification as a key component, is useful for estimating the effect of receipt of treatment in a population. Thus, for our application, we answer Pearl’s challenge to clearly demonstrate the value of principal stratification.

Suggested Citation

  • Baker Stuart G & Lindeman Karen S & Kramer Barnett S, 2011. "Clarifying the Role of Principal Stratification in the Paired Availability Design," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-11, May.
  • Handle: RePEc:bpj:ijbist:v:7:y:2011:i:1:n:25
    DOI: 10.2202/1557-4679.1338
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1557-4679.1338
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1557-4679.1338?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Constantine E. Frangakis & Donald B. Rubin, 2002. "Principal Stratification in Causal Inference," Biometrics, The International Biometric Society, vol. 58(1), pages 21-29, March.
    2. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    3. Pearl Judea, 2011. "Principal Stratification -- a Goal or a Tool?," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-13, March.
    4. Stuart G. Baker, 2011. "Estimation and Inference for the Causal Effect of Receiving Treatment on a Multinomial Outcome: An Alternative Approach," Biometrics, The International Biometric Society, vol. 67(1), pages 319-323, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mealli Fabrizia & Mattei Alessandra, 2012. "A Refreshing Account of Principal Stratification," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stuart G. Baker & Daniel J. Sargent & Marc Buyse & Tomasz Burzykowski, 2012. "Predicting Treatment Effect from Surrogate Endpoints and Historical Trials: An Extrapolation Involving Probabilities of a Binary Outcome or Survival to a Specific Time," Biometrics, The International Biometric Society, vol. 68(1), pages 248-257, March.
    2. Laura Forastiere & Fabrizia Mealli & Tyler J. VanderWeele, 2016. "Identification and Estimation of Causal Mechanisms in Clustered Encouragement Designs: Disentangling Bed Nets Using Bayesian Principal Stratification," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 510-525, April.
    3. Mealli Fabrizia & Mattei Alessandra, 2012. "A Refreshing Account of Principal Stratification," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-19, April.
    4. Laura Forastiere & Patrizia Lattarulo & Marco Mariani & Fabrizia Mealli & Laura Razzolini, 2021. "Exploring Encouragement, Treatment, and Spillover Effects Using Principal Stratification, With Application to a Field Experiment on Teens’ Museum Attendance," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 244-258, January.
    5. Martin Huber & Mark Schelker & Anthony Strittmatter, 2022. "Direct and Indirect Effects based on Changes-in-Changes," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 432-443, January.
    6. Silvia Noirjean & Mario Biggeri & Laura Forastiere & Fabrizia Mealli & Maria Nannini, 2023. "Estimating causal effects of community health financing via principal stratification," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(4), pages 1317-1350, October.
    7. Andrea Mercatanti & Fan Li, 2017. "Do debit cards decrease cash demand?: causal inference and sensitivity analysis using principal stratification," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 759-776, August.
    8. Kédagni, Désiré, 2023. "Identifying treatment effects in the presence of confounded types," Journal of Econometrics, Elsevier, vol. 234(2), pages 479-511.
    9. Shuxi Zeng & Fan Li & Peng Ding, 2020. "Is being an only child harmful to psychological health?: evidence from an instrumental variable analysis of China's one‐child policy," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1615-1635, October.
    10. Flores, Carlos A. & Flores-Lagunes, Alfonso, 2009. "Identification and Estimation of Causal Mechanisms and Net Effects of a Treatment under Unconfoundedness," IZA Discussion Papers 4237, Institute of Labor Economics (IZA).
    11. Deuchert, Eva & Eugster, Beatrix, 2019. "Income and substitution effects of a disability insurance reform," Journal of Public Economics, Elsevier, vol. 170(C), pages 1-14.
    12. Huber, Martin & Meier, Jonas & Wallimann, Hannes, 2022. "Business analytics meets artificial intelligence: Assessing the demand effects of discounts on Swiss train tickets," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 22-39.
    13. Imbens, Guido W., 2014. "Instrumental Variables: An Econometrician's Perspective," IZA Discussion Papers 8048, Institute of Labor Economics (IZA).
    14. Bartalotti, Otávio & Kédagni, Désiré & Possebom, Vitor, 2023. "Identifying marginal treatment effects in the presence of sample selection," Journal of Econometrics, Elsevier, vol. 234(2), pages 565-584.
    15. von Hinke, Stephanie & Davey Smith, George & Lawlor, Debbie A. & Propper, Carol & Windmeijer, Frank, 2016. "Genetic markers as instrumental variables," Journal of Health Economics, Elsevier, vol. 45(C), pages 131-148.
    16. Simon Calmar Andersen & Louise Beuchert & Phillip Heiler & Helena Skyt Nielsen, 2023. "A Guide to Impact Evaluation under Sample Selection and Missing Data: Teacher's Aides and Adolescent Mental Health," Papers 2308.04963, arXiv.org.
    17. James J. Heckman & Rodrigo Pinto, 2018. "Unordered Monotonicity," Econometrica, Econometric Society, vol. 86(1), pages 1-35, January.
    18. Linbo Wang & Thomas S. Richardson & Xiao-Hua Zhou, 2017. "Causal analysis of ordinal treatments and binary outcomes under truncation by death," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 719-735, June.
    19. Huber, Martin & Steinmayr, Andreas, 2017. "A framework for separating individual treatment effects from spillover, interaction, and general equilibrium effects," FSES Working Papers 481, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    20. Chuan Ju & Zhi Geng, 2010. "Criteria for surrogate end points based on causal distributions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 129-142, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:7:y:2011:i:1:n:25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.