Addressing Confounding in Predictive Models with an Application to Neuroimaging
Author
Abstract
Suggested Citation
DOI: 10.1515/ijb-2015-0030
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Reiss, Philip T. & Ogden, R. Todd, 2007. "Functional Principal Component Regression and Functional Partial Least Squares," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 984-996, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ufuk Beyaztas & Han Lin Shang, 2021. "A partial least squares approach for function-on-function interaction regression," Computational Statistics, Springer, vol. 36(2), pages 911-939, June.
- Md Altab Hossin & Shuwen Xiong & David Alemzero & Hermas Abudu, 2023. "Analyzing the Progress of China and the World in Achieving Sustainable Development Goals 7 and 13," Sustainability, MDPI, vol. 15(19), pages 1-16, September.
- Eduardo L. Montoya & Wendy Meiring, 2016. "An F-type test for detecting departure from monotonicity in a functional linear model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 322-337, June.
- Xu Gao & Weining Shen & Liwen Zhang & Jianhua Hu & Norbert J. Fortin & Ron D. Frostig & Hernando Ombao, 2021. "Regularized matrix data clustering and its application to image analysis," Biometrics, The International Biometric Society, vol. 77(3), pages 890-902, September.
- Klaus Ackermann & Simon D Angus & Paul A Raschky, 2020. "Estimating Sleep and Work Hours from Alternative Data by Segmented Functional Classification Analysis, SFCA," SoDa Laboratories Working Paper Series 2020-04, Monash University, SoDa Laboratories.
- Kawano, Shuichi & Fujisawa, Hironori & Takada, Toyoyuki & Shiroishi, Toshihiko, 2015. "Sparse principal component regression with adaptive loading," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 192-203.
- Kalogridis, Ioannis & Van Aelst, Stefan, 2023. "Robust penalized estimators for functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
- Chung Chang & Yakuan Chen & R. Ogden, 2014. "Functional data classification: a wavelet approach," Computational Statistics, Springer, vol. 29(6), pages 1497-1513, December.
- Angélica Pigola & Bruno Fischer & Gustavo Hermínio Salati Marcondes de Moraes, 2024. "Impacts of Digital Entrepreneurial Ecosystems on Sustainable Development: Insights from Latin America," Sustainability, MDPI, vol. 16(18), pages 1-30, September.
- Scott H. Holan & Christopher K. Wikle & Laura E. Sullivan-Beckers & Reginald B. Cocroft, 2010. "Modeling Complex Phenotypes: Generalized Linear Models Using Spectrogram Predictors of Animal Communication Signals," Biometrics, The International Biometric Society, vol. 66(3), pages 914-924, September.
- Dehan Kong & Joseph G. Ibrahim & Eunjee Lee & Hongtu Zhu, 2018. "FLCRM: Functional linear cox regression model," Biometrics, The International Biometric Society, vol. 74(1), pages 109-117, March.
- Ciarleglio, Adam & Todd Ogden, R., 2016. "Wavelet-based scalar-on-function finite mixture regression models," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 86-96.
- Meeks, Roland & Monti, Francesca, 2023.
"Heterogeneous beliefs and the Phillips curve,"
Journal of Monetary Economics, Elsevier, vol. 139(C), pages 41-54.
- Meeks, Roland & Monti, Francesca, 2019. "Heterogeneous beliefs and the Phillips curve," Bank of England working papers 807, Bank of England.
- Meeks, Roland & Monti, Francesca, 2022. "Heterogeneous beliefs and the Phillips curve," CEPR Discussion Papers 17537, C.E.P.R. Discussion Papers.
- Roland Meeks & Francesca Monti, 2022. "Heterogeneous Beliefs and the Phillips Curve," CAMA Working Papers 2022-51, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Philip T. Reiss & R. Todd Ogden, 2010. "Functional Generalized Linear Models with Images as Predictors," Biometrics, The International Biometric Society, vol. 66(1), pages 61-69, March.
- Górecki Tomasz & Krzyśko Mirosław & Wołyński Waldemar, 2015. "Classification Problems Based on Regression Models for Multi-Dimensional Functional Data," Statistics in Transition New Series, Statistics Poland, vol. 16(1), pages 97-110, March.
- Manuel Febrero-Bande & Pedro Galeano & Wenceslao González-Manteiga, 2017. "Functional Principal Component Regression and Functional Partial Least-squares Regression: An Overview and a Comparative Study," International Statistical Review, International Statistical Institute, vol. 85(1), pages 61-83, April.
- Górecki Tomasz & Krzyśko Mirosław & Ratajczak Waldemar & Wołyński Waldemar, 2016. "An Extension of the Classical Distance Correlation Coefficient for Multivariate Functional Data with Applications," Statistics in Transition New Series, Statistics Poland, vol. 17(3), pages 449-466, September.
- Klaus Ackermann & Simon D. Angus & Paul A. Raschky, 2020. "Estimating Sleep & Work Hours from Alternative Data by Segmented Functional Classification Analysis (SFCA)," Papers 2010.08102, arXiv.org.
- Lakraj, Gamage Pemantha & Ruymgaart, Frits, 2017. "Some asymptotic theory for Silverman’s smoothed functional principal components in an abstract Hilbert space," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 122-132.
- Christoph Hellmayr & Alan E. Gelfand, 2021. "A Partition Dirichlet Process Model for Functional Data Analysis," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 30-65, May.
More about this item
Keywords
Multivariate pattern analysis (MVPA); structural magnetic resonance imaging (MRI); confounding; inverse probability weighting; support vector machine (SVM); machine learning; predictive modeling;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:12:y:2016:i:1:p:31-44:n:13. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.