IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v66y2010i3p914-924.html
   My bibliography  Save this article

Modeling Complex Phenotypes: Generalized Linear Models Using Spectrogram Predictors of Animal Communication Signals

Author

Listed:
  • Scott H. Holan
  • Christopher K. Wikle
  • Laura E. Sullivan-Beckers
  • Reginald B. Cocroft

Abstract

No abstract is available for this item.

Suggested Citation

  • Scott H. Holan & Christopher K. Wikle & Laura E. Sullivan-Beckers & Reginald B. Cocroft, 2010. "Modeling Complex Phenotypes: Generalized Linear Models Using Spectrogram Predictors of Animal Communication Signals," Biometrics, The International Biometric Society, vol. 66(3), pages 914-924, September.
  • Handle: RePEc:bla:biomet:v:66:y:2010:i:3:p:914-924
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2009.01331.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xiaohui & Ray, Shubhankar & Mallick, Bani K., 2007. "Bayesian Curve Classification Using Wavelets," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 962-973, September.
    2. Reiss, Philip T. & Ogden, R. Todd, 2007. "Functional Principal Component Regression and Functional Partial Least Squares," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 984-996, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Philip T. Reiss & Jeff Goldsmith & Han Lin Shang & R. Todd Ogden, 2017. "Methods for Scalar-on-Function Regression," International Statistical Review, International Statistical Institute, vol. 85(2), pages 228-249, August.
    2. Paul A. Parker & Scott H. Holan, 2023. "A Bayesian functional data model for surveys collected under informative sampling with application to mortality estimation using NHANES," Biometrics, The International Biometric Society, vol. 79(2), pages 1397-1408, June.
    3. Shiers, Nathaniel & Aston, John A.D. & Smith, Jim Q. & Coleman, John S., 2017. "Gaussian tree constraints applied to acoustic linguistic functional data," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 199-215.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ufuk Beyaztas & Han Lin Shang, 2021. "A partial least squares approach for function-on-function interaction regression," Computational Statistics, Springer, vol. 36(2), pages 911-939, June.
    2. Md Altab Hossin & Shuwen Xiong & David Alemzero & Hermas Abudu, 2023. "Analyzing the Progress of China and the World in Achieving Sustainable Development Goals 7 and 13," Sustainability, MDPI, vol. 15(19), pages 1-16, September.
    3. Eduardo L. Montoya & Wendy Meiring, 2016. "An F-type test for detecting departure from monotonicity in a functional linear model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 322-337, June.
    4. Xu Gao & Weining Shen & Liwen Zhang & Jianhua Hu & Norbert J. Fortin & Ron D. Frostig & Hernando Ombao, 2021. "Regularized matrix data clustering and its application to image analysis," Biometrics, The International Biometric Society, vol. 77(3), pages 890-902, September.
    5. Goldsmith, Jeff & Scheipl, Fabian, 2014. "Estimator selection and combination in scalar-on-function regression," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 362-372.
    6. Tomasz Górecki & Mirosław Krzyśko & Waldemar Wołyński, 2015. "Classification Problems Based On Regression Models For Multi-Dimensional Functional Data," Statistics in Transition New Series, Polish Statistical Association, vol. 16(1), pages 97-110, March.
    7. Klaus Ackermann & Simon D Angus & Paul A Raschky, 2020. "Estimating Sleep and Work Hours from Alternative Data by Segmented Functional Classification Analysis, SFCA," SoDa Laboratories Working Paper Series 2020-04, Monash University, SoDa Laboratories.
    8. Kawano, Shuichi & Fujisawa, Hironori & Takada, Toyoyuki & Shiroishi, Toshihiko, 2015. "Sparse principal component regression with adaptive loading," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 192-203.
    9. Kawano, Shuichi & Fujisawa, Hironori & Takada, Toyoyuki & Shiroishi, Toshihiko, 2018. "Sparse principal component regression for generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 180-196.
    10. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Rejoinder on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 52-58, March.
    11. Han Lin Shang, 2014. "Bayesian bandwidth estimation for a functional nonparametric regression model with mixed types of regressors and unknown error density," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(3), pages 599-615, September.
    12. Kalogridis, Ioannis & Van Aelst, Stefan, 2023. "Robust penalized estimators for functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    13. Anton Rask Lundborg & Rajen D. Shah & Jonas Peters, 2022. "Conditional independence testing in Hilbert spaces with applications to functional data analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1821-1850, November.
    14. M. Aguilera-Morillo & Ana Aguilera & Manuel Escabias & Mariano Valderrama, 2013. "Penalized spline approaches for functional logit regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 251-277, June.
    15. Ana M. Aguilera, 2016. "Comments on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 23-26, March.
    16. Pigoli, Davide & Sangalli, Laura M., 2012. "Wavelets in functional data analysis: Estimation of multidimensional curves and their derivatives," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1482-1498.
    17. Chung Chang & Yakuan Chen & R. Ogden, 2014. "Functional data classification: a wavelet approach," Computational Statistics, Springer, vol. 29(6), pages 1497-1513, December.
    18. Luo, Ruiyan & Qi, Xin, 2015. "Sparse wavelet regression with multiple predictive curves," Journal of Multivariate Analysis, Elsevier, vol. 134(C), pages 33-49.
    19. Angélica Pigola & Bruno Fischer & Gustavo Hermínio Salati Marcondes de Moraes, 2024. "Impacts of Digital Entrepreneurial Ecosystems on Sustainable Development: Insights from Latin America," Sustainability, MDPI, vol. 16(18), pages 1-30, September.
    20. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Rejoinder on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 52-58, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:66:y:2010:i:3:p:914-924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.