IDEAS home Printed from https://ideas.repec.org/a/bpj/ijbist/v12y2016i1p233-252n17.html
   My bibliography  Save this article

Doubly Robust and Efficient Estimation of Marginal Structural Models for the Hazard Function

Author

Listed:
  • Zheng Wenjing

    (School of Public Health, University of California, Berkeley, 590D University Hall, Berkeley, CA 94704, USA)

  • Petersen Maya

    (School of Public Health, University of California, Berkeley, Berkeley, CA 94704, USA)

  • van der Laan Mark J.

    (School of Public Health, University of California, Berkeley, Berkeley, CA 94704, USA)

Abstract

In social and health sciences, many research questions involve understanding the causal effect of a longitudinal treatment on mortality (or time-to-event outcomes in general). Often, treatment status may change in response to past covariates that are risk factors for mortality, and in turn, treatment status may also affect such subsequent covariates. In these situations, Marginal Structural Models (MSMs), introduced by Robins (1997. Marginal structural models Proceedings of the American Statistical Association. Section on Bayesian Statistical Science, 1–10), are well-established and widely used tools to account for time-varying confounding. In particular, a MSM can be used to specify the intervention-specific counterfactual hazard function, i. e. the hazard for the outcome of a subject in an ideal experiment where he/she was assigned to follow a given intervention on their treatment variables. The parameters of this hazard MSM are traditionally estimated using the Inverse Probability Weighted estimation Robins (1999. Marginal structural models versus structural nested models as tools for causal inference. In: Statistical models in epidemiology: the environment and clinical trials. Springer-Verlag, 1999:95–134), Robins et al. (2000), (IPTW, van der Laan and Petersen (2007. Causal effect models for realistic individualized treatment and intention to treat rules. Int J Biostat 2007;3:Article 3), Robins et al. (2008. Estimaton and extrapolation of optimal treatment and testing strategies. Statistics in Medicine 2008;27(23):4678–721)). This estimator is easy to implement and admits Wald-type confidence intervals. However, its consistency hinges on the correct specification of the treatment allocation probabilities, and the estimates are generally sensitive to large treatment weights (especially in the presence of strong confounding), which are difficult to stabilize for dynamic treatment regimes. In this paper, we present a pooled targeted maximum likelihood estimator (TMLE, van der Laan and Rubin (2006. Targeted maximum likelihood learning. The International Journal of Biostatistics 2006;2:1–40)) for MSM for the hazard function under longitudinal dynamic treatment regimes. The proposed estimator is semiparametric efficient and doubly robust, offering bias reduction over the incumbent IPTW estimator when treatment probabilities may be misspecified. Moreover, the substitution principle rooted in the TMLE potentially mitigates the sensitivity to large treatment weights in IPTW. We compare the performance of the proposed estimator with the IPTW and a on-targeted substitution estimator in a simulation study.

Suggested Citation

  • Zheng Wenjing & Petersen Maya & van der Laan Mark J., 2016. "Doubly Robust and Efficient Estimation of Marginal Structural Models for the Hazard Function," The International Journal of Biostatistics, De Gruyter, vol. 12(1), pages 233-252, May.
  • Handle: RePEc:bpj:ijbist:v:12:y:2016:i:1:p:233-252:n:17
    DOI: 10.1515/ijb-2015-0036
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/ijb-2015-0036
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/ijb-2015-0036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van der Laan Mark J. & Rubin Daniel, 2006. "Targeted Maximum Likelihood Learning," The International Journal of Biostatistics, De Gruyter, vol. 2(1), pages 1-40, December.
    2. Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Frédéric Blanche & Anders Holt & Thomas Scheike, 2023. "On logistic regression with right censored data, with or without competing risks, and its use for estimating treatment effects," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 441-482, April.
    2. Yiyi Huo & Yingying Fan & Fang Han, 2023. "On the adaptation of causal forests to manifold data," Papers 2311.16486, arXiv.org, revised Dec 2023.
    3. Antonelli Joseph & Cefalu Matthew, 2020. "Averaging causal estimators in high dimensions," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 92-107, January.
    4. Iván Díaz & Elizabeth Colantuoni & Daniel F. Hanley & Michael Rosenblum, 2019. "Improved precision in the analysis of randomized trials with survival outcomes, without assuming proportional hazards," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 439-468, July.
    5. Frölich, Markus & Huber, Martin & Wiesenfarth, Manuel, 2017. "The finite sample performance of semi- and non-parametric estimators for treatment effects and policy evaluation," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 91-102.
    6. Zhiwei Zhang & Zhen Chen & James F. Troendle & Jun Zhang, 2012. "Causal Inference on Quantiles with an Obstetric Application," Biometrics, The International Biometric Society, vol. 68(3), pages 697-706, September.
    7. Mireille E. Schnitzer & Erica E.M. Moodie & Mark J. van der Laan & Robert W. Platt & Marina B. Klein, 2014. "Modeling the impact of hepatitis C viral clearance on end-stage liver disease in an HIV co-infected cohort with targeted maximum likelihood estimation," Biometrics, The International Biometric Society, vol. 70(1), pages 144-152, March.
    8. Hugo Bodory & Martin Huber & Lukáš Lafférs, 2022. "Evaluating (weighted) dynamic treatment effects by double machine learning [Identification of causal effects using instrumental variables]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 628-648.
    9. Susan Gruber & Mark J. van der Laan, 2013. "An Application of Targeted Maximum Likelihood Estimation to the Meta-Analysis of Safety Data," Biometrics, The International Biometric Society, vol. 69(1), pages 254-262, March.
    10. Cousineau, Martin & Verter, Vedat & Murphy, Susan A. & Pineau, Joelle, 2023. "Estimating causal effects with optimization-based methods: A review and empirical comparison," European Journal of Operational Research, Elsevier, vol. 304(2), pages 367-380.
    11. Torben Martinussen & Mats Julius Stensrud, 2023. "Estimation of separable direct and indirect effects in continuous time," Biometrics, The International Biometric Society, vol. 79(1), pages 127-139, March.
    12. David Cheng & Ashwin N. Ananthakrishnan & Tianxi Cai, 2021. "Robust and efficient semi‐supervised estimation of average treatment effects with application to electronic health records data," Biometrics, The International Biometric Society, vol. 77(2), pages 413-423, June.
    13. Stephens Alisa & Tchetgen Tchetgen Eric & De Gruttola Victor, 2014. "Locally Efficient Estimation of Marginal Treatment Effects When Outcomes Are Correlated: Is the Prize Worth the Chase?," The International Journal of Biostatistics, De Gruyter, vol. 10(1), pages 59-75, May.
    14. repec:bla:istatr:v:83:y:2015:i:3:p:449-471 is not listed on IDEAS
    15. David Benkeser & Keith Horvath & Cathy J. Reback & Joshua Rusow & Michael Hudgens, 2020. "Design and Analysis Considerations for a Sequentially Randomized HIV Prevention Trial," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 446-467, December.
    16. Jianxuan Liu & Yanyuan Ma & Lan Wang, 2018. "An alternative robust estimator of average treatment effect in causal inference," Biometrics, The International Biometric Society, vol. 74(3), pages 910-923, September.
    17. Harsh Parikh & Carlos Varjao & Louise Xu & Eric Tchetgen Tchetgen, 2022. "Validating Causal Inference Methods," Papers 2202.04208, arXiv.org, revised Jul 2022.
    18. Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2022. "Locally Robust Semiparametric Estimation," Econometrica, Econometric Society, vol. 90(4), pages 1501-1535, July.
    19. Zhiwei Zhang & Richard M. Kotz & Chenguang Wang & Shiling Ruan & Martin Ho, 2013. "A Causal Model for Joint Evaluation of Placebo and Treatment-Specific Effects in Clinical Trials," Biometrics, The International Biometric Society, vol. 69(2), pages 318-327, June.
    20. Antonio R. Linero, 2023. "Prior and posterior checking of implicit causal assumptions," Biometrics, The International Biometric Society, vol. 79(4), pages 3153-3164, December.
    21. Isaac Meza & Rahul Singh, 2021. "Nested Nonparametric Instrumental Variable Regression: Long Term, Mediated, and Time Varying Treatment Effects," Papers 2112.14249, arXiv.org, revised Mar 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:12:y:2016:i:1:p:233-252:n:17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.