IDEAS home Printed from https://ideas.repec.org/a/bpj/ecqcon/v32y2017i2p63-75n4.html
   My bibliography  Save this article

Multi-Type Branching Processes Modeling of Nosocomial Epidemics

Author

Listed:
  • Mohamed Zeinab

    (School of Mathematical and Statistical Sciences, University of Texas Rio Grande Valley, Edinburg, USA)

  • Oraby Tamer

    (School of Mathematical and Statistical Sciences, University of Texas Rio Grande Valley, Edinburg, USA)

Abstract

Nosocomial epidemics are infectious diseases which spread among different types of susceptible individuals in a health-care facility. To model this type of epidemics, we use a multi-type branching process with a multivariate negative binomial offspring distribution. In particular, we estimate the basic reproduction number R0{R_{0}} and study its relationship with the parameters of the offspring distribution. in case of a single-type epidemic, we investigate the effect of contact tracing on the estimates for R0{R_{0}}.

Suggested Citation

  • Mohamed Zeinab & Oraby Tamer, 2017. "Multi-Type Branching Processes Modeling of Nosocomial Epidemics," Stochastics and Quality Control, De Gruyter, vol. 32(2), pages 63-75, December.
  • Handle: RePEc:bpj:ecqcon:v:32:y:2017:i:2:p:63-75:n:4
    DOI: 10.1515/eqc-2017-0026
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/eqc-2017-0026
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/eqc-2017-0026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seth Blumberg & James O Lloyd-Smith, 2013. "Inference of R0 and Transmission Heterogeneity from the Size Distribution of Stuttering Chains," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
    2. Miguel González & Cristina Gutiérrez & Rodrigo Martínez, 2021. "Limiting Genotype Frequencies of Y-Linked Genes with a Mutant Allele in a Two-Sex Population," Mathematics, MDPI, vol. 9(2), pages 1-19, January.
    3. Tobias S Brett & Pejman Rohani, 2020. "Dynamical footprints enable detection of disease emergence," PLOS Biology, Public Library of Science, vol. 18(5), pages 1-20, May.
    4. Yuying Li & Taojun Hu & Xin Gai & Yunjun Zhang & Xiaohua Zhou, 2021. "Transmission Dynamics, Heterogeneity and Controllability of SARS-CoV-2: A Rural–Urban Comparison," IJERPH, MDPI, vol. 18(10), pages 1-10, May.
    5. Lingcai Kong & Jinfeng Wang & Zhongjie Li & Shengjie Lai & Qiyong Liu & Haixia Wu & Weizhong Yang, 2018. "Modeling the Heterogeneity of Dengue Transmission in a City," IJERPH, MDPI, vol. 15(6), pages 1-21, May.
    6. Tobias S Brett & Eamon B O’Dea & Éric Marty & Paige B Miller & Andrew W Park & John M Drake & Pejman Rohani, 2018. "Anticipating epidemic transitions with imperfect data," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-18, June.
    7. Yunjun Zhang & Yuying Li & Lu Wang & Mingyuan Li & Xiaohua Zhou, 2020. "Evaluating Transmission Heterogeneity and Super-Spreading Event of COVID-19 in a Metropolis of China," IJERPH, MDPI, vol. 17(10), pages 1-11, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ecqcon:v:32:y:2017:i:2:p:63-75:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.