IDEAS home Printed from https://ideas.repec.org/a/bpj/ecqcon/v21y2006i2p209-217n4.html
   My bibliography  Save this article

Loss Reduction in Point Estimation Problems

Author

Listed:
  • Heike Hans-Dieter

    (Statistik und Ökonometrie, Technische Universität Darmstadt, Germany)

  • Demetrescu Matei

    (Statistik und Methoden der Ökonometrie, Goethe-Universität Frankfurt, Germany)

Abstract

When evaluating point estimators by means of general loss functions, the expected loss is not always minimal, similar to the case of mean-biased estimators, whose mean squared error can be reduced by accounting for the mean-bias. Depending on the loss function, the socalled Lehmann-bias can be significantly more important than the mean-bias of an estimator. Although a simple decomposition does not hold for expected losses as it does for the mean squared error, the expected loss can still be reduced by correcting for the Lehmann-bias. An asymptotic and a bootstrap-based correction are suggested and compared in small samples for the exponential distribution by means of Monte Carlo simulation.

Suggested Citation

  • Heike Hans-Dieter & Demetrescu Matei, 2006. "Loss Reduction in Point Estimation Problems," Stochastics and Quality Control, De Gruyter, vol. 21(2), pages 209-217, January.
  • Handle: RePEc:bpj:ecqcon:v:21:y:2006:i:2:p:209-217:n:4
    DOI: 10.1515/EQC.2006.209
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/EQC.2006.209
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/EQC.2006.209?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. West, Kenneth D. & Edison, Hali J. & Cho, Dongchul, 1993. "A utility-based comparison of some models of exchange rate volatility," Journal of International Economics, Elsevier, vol. 35(1-2), pages 23-45, August.
    2. Clive W.J. Granger, 1999. "Outline of forecast theory using generalized cost functions," Spanish Economic Review, Springer;Spanish Economic Association, vol. 1(2), pages 161-173.
    3. Christoffersen, Peter F. & Diebold, Francis X., 1997. "Optimal Prediction Under Asymmetric Loss," Econometric Theory, Cambridge University Press, vol. 13(6), pages 808-817, December.
    4. Rao G. Srinivasa & Kantam R. R. L., 2004. "A Note on Point Estimation of System Reliability Exemplified for the Log-Logistic Distribution," Stochastics and Quality Control, De Gruyter, vol. 19(2), pages 197-204, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timmermann, Allan & Patton, Andrew, 2003. "Properties of Optimal Forecasts," CEPR Discussion Papers 4037, C.E.P.R. Discussion Papers.
    2. Elliott, Graham & Timmermann, Allan, 2004. "Optimal forecast combinations under general loss functions and forecast error distributions," Journal of Econometrics, Elsevier, vol. 122(1), pages 47-79, September.
    3. Patton, Andrew J. & Timmermann, Allan, 2005. "Testable implications of forecast optimality," LSE Research Online Documents on Economics 6834, London School of Economics and Political Science, LSE Library.
    4. Siddhartha S. Bora & Ani L. Katchova & Todd H. Kuethe, 2021. "The Rationality of USDA Forecasts under Multivariate Asymmetric Loss," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 1006-1033, May.
    5. Matei Demetrescu, 2007. "Optimal forecast intervals under asymmetric loss," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 227-238.
    6. Timmermann, Allan & Elliott, Graham & Komunjer, Ivana, 2003. "Estimating Loss Function Parameters," CEPR Discussion Papers 3821, C.E.P.R. Discussion Papers.
    7. Athanasia Gavala & Nikolay Gospodinov & Deming Jiang, 2006. "Forecasting volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 381-400.
    8. Korbinian Dress & Stefan Lessmann & Hans-Jorg von Mettenheim, 2017. "Residual Value Forecasting Using Asymmetric Cost Functions," Papers 1707.02736, arXiv.org.
    9. Patton, Andrew J. & Timmermann, Allan, 2007. "Properties of optimal forecasts under asymmetric loss and nonlinearity," Journal of Econometrics, Elsevier, vol. 140(2), pages 884-918, October.
    10. George Christodoulakis, 2012. "Conditions for rational investment short-termism," Annals of Finance, Springer, vol. 8(1), pages 15-29, February.
    11. Kostas Mouratidis & Dimitris Kenourgios & Aris Samitas, 2010. "Evaluating currency crisis:A multivariate Markov switching approach," Working Papers 2010018, The University of Sheffield, Department of Economics, revised Oct 2010.
    12. Bruzda, Joanna, 2019. "Quantile smoothing in supply chain and logistics forecasting," International Journal of Production Economics, Elsevier, vol. 208(C), pages 122-139.
    13. Blaskowitz, Oliver & Herwartz, Helmut, 2011. "On economic evaluation of directional forecasts," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1058-1065, October.
    14. Anatolyev, Stanislav, 2009. "Dynamic modeling under linear-exponential loss," Economic Modelling, Elsevier, vol. 26(1), pages 82-89, January.
    15. Cheng, Gang & Yang, Yuhong, 2015. "Forecast combination with outlier protection," International Journal of Forecasting, Elsevier, vol. 31(2), pages 223-237.
    16. Capistrán, Carlos, 2008. "Bias in Federal Reserve inflation forecasts: Is the Federal Reserve irrational or just cautious?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1415-1427, November.
    17. Francis X. Diebold & Jose A. Lopez, 1995. "Forecast evaluation and combination," Research Paper 9525, Federal Reserve Bank of New York.
    18. Issler, João Victor & Soares, Ana Flávia, 2019. "Central Bank credibility and inflation expectations: a microfounded forecasting approach," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 812, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    19. Clements, Michael P. & Franses, Philip Hans & Swanson, Norman R., 2004. "Forecasting economic and financial time-series with non-linear models," International Journal of Forecasting, Elsevier, vol. 20(2), pages 169-183.
    20. Georgios Tsiotas, 2022. "Regression Analysis Using Asymmetric Losses: A Bayesian Approach," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(2), pages 311-327, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ecqcon:v:21:y:2006:i:2:p:209-217:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.