IDEAS home Printed from https://ideas.repec.org/a/bpj/causin/v7y2019i2p36n2.html
   My bibliography  Save this article

Regression Adjustments for Estimating the Global Treatment Effect in Experiments with Interference

Author

Listed:
  • Chin Alex

    (Department of Statistics, Stanford University, Stanford, 94305CA, USA)

Abstract

Standard estimators of the global average treatment effect can be biased in the presence of interference. This paper proposes regression adjustment estimators for removing bias due to interference in Bernoulli randomized experiments. We use a fitted model to predict the counterfactual outcomes of global control and global treatment. Our work differs from standard regression adjustments in that the adjustment variables are constructed from functions of the treatment assignment vector, and that we allow the researcher to use a collection of any functions correlated with the response, turning the problem of detecting interference into a feature engineering problem. We characterize the distribution of the proposed estimator in a linear model setting and connect the results to the standard theory of regression adjustments under SUTVA. We then propose an estimator that allows for flexible machine learning estimators to be used for fitting a nonlinear interference functional form. We propose conducting statistical inference via bootstrap and resampling methods, which allow us to sidestep the complicated dependences implied by interference and instead rely on empirical covariance structures. Such variance estimation relies on an exogeneity assumption akin to the standard unconfoundedness assumption invoked in observational studies. In simulation experiments, our methods are better at debiasing estimates than existing inverse propensity weighted estimators based on neighborhood exposure modeling. We use our method to reanalyze an experiment concerning weather insurance adoption conducted on a collection of villages in rural China.

Suggested Citation

  • Chin Alex, 2019. "Regression Adjustments for Estimating the Global Treatment Effect in Experiments with Interference," Journal of Causal Inference, De Gruyter, vol. 7(2), pages 1-36, September.
  • Handle: RePEc:bpj:causin:v:7:y:2019:i:2:p:36:n:2
    DOI: 10.1515/jci-2018-0026
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jci-2018-0026
    Download Restriction: no

    File URL: https://libkey.io/10.1515/jci-2018-0026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Charles F. Manski, 1993. "Identification of Endogenous Social Effects: The Reflection Problem," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(3), pages 531-542.
    2. Lori Beaman & Ariel BenYishay & Jeremy Magruder & Ahmed Mushfiq Mobarak, 2021. "Can Network Theory-Based Targeting Increase Technology Adoption?," American Economic Review, American Economic Association, vol. 111(6), pages 1918-1943, June.
    3. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    4. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruoxuan Xiong & Alex Chin & Sean J. Taylor, 2024. "Data-Driven Switchback Experiments: Theoretical Tradeoffs and Empirical Bayes Designs," Papers 2406.06768, arXiv.org.
    2. Luofeng Liao & Christian Kroer & Sergei Leonenkov & Okke Schrijvers & Liang Shi & Nicolas Stier-Moses & Congshan Zhang, 2024. "Interference Among First-Price Pacing Equilibria: A Bias and Variance Analysis," Papers 2402.07322, arXiv.org.
    3. Ido Bright & Arthur Delarue & Ilan Lobel, 2022. "Reducing Marketplace Interference Bias Via Shadow Prices," Papers 2205.02274, arXiv.org, revised Mar 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    2. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    3. Dettmann, E. & Becker, C. & Schmeißer, C., 2011. "Distance functions for matching in small samples," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1942-1960, May.
    4. Kitagawa, Toru & Muris, Chris, 2016. "Model averaging in semiparametric estimation of treatment effects," Journal of Econometrics, Elsevier, vol. 193(1), pages 271-289.
    5. Frölich, Markus & Michaelowa, Katharina, 2004. "Peer effects and textbooks in primary education: Evidence from francophone sub-Saharan Africa," HWWA Discussion Papers 311, Hamburg Institute of International Economics (HWWA).
    6. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2008. "Nonparametric Tests for Treatment Effect Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 389-405, August.
    7. Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2021. "A unified framework for efficient estimation of general treatment models," Quantitative Economics, Econometric Society, vol. 12(3), pages 779-816, July.
    8. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2006. "Moving the Goalposts: Addressing Limited Overlap in the Estimation of Average Treatment Effects by Changing the Estimand," NBER Technical Working Papers 0330, National Bureau of Economic Research, Inc.
    9. Fernando, A. Nilesh, 2021. "Seeking the treated: The impact of mobile extension on farmer information exchange in India," Journal of Development Economics, Elsevier, vol. 153(C).
    10. Andrew Chesher & Erich Battistin, 2004. "The Impact of Measurement Error on Evaluation Methods Based on Strong Ignorability," Econometric Society 2004 North American Summer Meetings 339, Econometric Society.
    11. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2009. "Dealing with limited overlap in estimation of average treatment effects," Biometrika, Biometrika Trust, vol. 96(1), pages 187-199.
    12. Battistin, Erich & Chesher, Andrew, 2014. "Treatment effect estimation with covariate measurement error," Journal of Econometrics, Elsevier, vol. 178(2), pages 707-715.
    13. Bernhard Schmidpeter, 2015. "The Fatal Consequences of Grief," CDL Aging, Health, Labor working papers 2015-07, The Christian Doppler (CD) Laboratory Aging, Health, and the Labor Market, Johannes Kepler University Linz, Austria.
    14. Halbert White & Karim Chalak, 2013. "Identification and Identification Failure for Treatment Effects Using Structural Systems," Econometric Reviews, Taylor & Francis Journals, vol. 32(3), pages 273-317, November.
    15. Mammen, Enno & Rothe, Christoph & Schienle, Melanie, 2016. "Semiparametric Estimation With Generated Covariates," Econometric Theory, Cambridge University Press, vol. 32(5), pages 1140-1177, October.
    16. Hao Dong & Daniel L. Millimet, 2020. "Propensity Score Weighting with Mismeasured Covariates: An Application to Two Financial Literacy Interventions," JRFM, MDPI, vol. 13(11), pages 1-24, November.
    17. Francesco Drago & Friederike Mengel & Christian Traxler, 2020. "Compliance Behavior in Networks: Evidence from a Field Experiment," American Economic Journal: Applied Economics, American Economic Association, vol. 12(2), pages 96-133, April.
    18. Dettmann, Eva & Becker, Claudia & Schmeißer, Christian, 2010. "Is there a Superior Distance Function for Matching in Small Samples?," IWH Discussion Papers 3/2010, Halle Institute for Economic Research (IWH).
    19. Gevrek, Z. Eylem & Gevrek, Deniz & Neumeier, Christian, 2020. "Explaining the gender gaps in mathematics achievement and attitudes: The role of societal gender equality," Economics of Education Review, Elsevier, vol. 76(C).
    20. Carlos A. Flores & Oscar A. Mitnik, 2009. "Evaluating Nonexperimental Estimators for Multiple Treatments: Evidence from Experimental Data," Working Papers 2010-10, University of Miami, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:causin:v:7:y:2019:i:2:p:36:n:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.