IDEAS home Printed from https://ideas.repec.org/a/bpj/causin/v2y2014i2p15n5.html
   My bibliography  Save this article

The Deductive Approach to Causal Inference

Author

Listed:
  • Pearl Judea

    (Department of Computer Science, University of California – Los Angeles, Los Angeles, CA, 90095-1596, USA)

Abstract

This paper reviews concepts, principles, and tools that have led to a coherent mathematical theory that unifies the graphical, structural, and potential outcome approaches to causal inference. The theory provides solutions to a number of pending problems in causal analysis, including questions of confounding control, policy analysis, mediation, missing data, and the integration of data from diverse studies.

Suggested Citation

  • Pearl Judea, 2014. "The Deductive Approach to Causal Inference," Journal of Causal Inference, De Gruyter, vol. 2(2), pages 115-129, September.
  • Handle: RePEc:bpj:causin:v:2:y:2014:i:2:p:15:n:5
    DOI: 10.1515/jci-2014-0016
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jci-2014-0016
    Download Restriction: no

    File URL: https://libkey.io/10.1515/jci-2014-0016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Manabu Kuroki & Judea Pearl, 2014. "Measurement bias and effect restoration in causal inference," Biometrika, Biometrika Trust, vol. 101(2), pages 423-437.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manabu Kuroki & Hisayoshi Nanmo, 2020. "Variance formulas for estimated mean response and predicted response with external intervention based on the back-door criterion in linear structural equation models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 667-685, December.
    2. Sujin Park & Ali Tafti & Galit Shmueli, 2024. "Transporting Causal Effects Across Populations Using Structural Causal Modeling: An Illustration to Work-from-Home Productivity," Information Systems Research, INFORMS, vol. 35(2), pages 686-705, June.
    3. Burkhard Raunig, 2019. "Background Indicators," Econometrics, MDPI, vol. 7(2), pages 1-14, May.
    4. Allman Elizabeth S. & Rhodes John A. & Stanghellini Elena & Valtorta Marco, 2015. "Parameter Identifiability of Discrete Bayesian Networks with Hidden Variables," Journal of Causal Inference, De Gruyter, vol. 3(2), pages 189-205, September.
    5. AmirEmad Ghassami & Andrew Ying & Ilya Shpitser & Eric Tchetgen Tchetgen, 2021. "Minimax Kernel Machine Learning for a Class of Doubly Robust Functionals with Application to Proximal Causal Inference," Papers 2104.02929, arXiv.org, revised Mar 2022.
    6. Manabu Kuroki & Takahiro Hayashi, 2016. "On the Estimation Accuracy of Causal Effects using Supplementary Variables," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 505-519, June.
    7. Manabu Kuroki, 2016. "The Identification of Direct and Indirect Effects in Studies with an Unmeasured Intermediate Variable," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 228-245, March.
    8. Rahul Singh, 2020. "Kernel Methods for Unobserved Confounding: Negative Controls, Proxies, and Instruments," Papers 2012.10315, arXiv.org, revised Mar 2023.
    9. Marie-Ann Sengewald & Steffi Pohl, 2019. "Compensation and Amplification of Attenuation Bias in Causal Effect Estimates," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 589-610, June.
    10. Elena Stanghellini & Eduwin Pakpahan, 2015. "Identification of causal effects in linear models: beyond instrumental variables," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 489-509, September.
    11. Corder Nathan & Yang Shu, 2020. "Estimating Average Treatment Effects Utilizing Fractional Imputation when Confounders are Subject to Missingness," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 249-271, January.
    12. J. R. Lockwood & Daniel F. McCaffrey, 2019. "Impact Evaluation Using Analysis of Covariance With Error-Prone Covariates That Violate Surrogacy," Evaluation Review, , vol. 43(6), pages 335-369, December.
    13. Nanmo, Hisayoshi & Kuroki, Manabu, 2021. "Exact variance formula for the estimated mean outcome with external intervention based on the front-door criterion in Gaussian linear structural equation models," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    14. Corder Nathan & Yang Shu, 2020. "Estimating Average Treatment Effects Utilizing Fractional Imputation when Confounders are Subject to Missingness," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 249-271, January.
    15. J. R. Lockwood & D. McCaffrey, 2020. "Using hidden information and performance level boundaries to study student–teacher assignments: implications for estimating teacher causal effects," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1333-1362, October.
    16. Trang Quynh Nguyen & Elizabeth A. Stuart, 2020. "Propensity Score Analysis With Latent Covariates: Measurement Error Bias Correction Using the Covariate’s Posterior Mean, aka the Inclusive Factor Score," Journal of Educational and Behavioral Statistics, , vol. 45(5), pages 598-636, October.
    17. Ryusei Shingaki & Hiroshi Kanda & Manabu Kuroki, 2021. "Selection and integration of generalized instrumental variables for estimating total effects," Statistical Papers, Springer, vol. 62(5), pages 2355-2381, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:causin:v:2:y:2014:i:2:p:15:n:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.