2D score-based estimation of heterogeneous treatment effects
Author
Abstract
Suggested Citation
DOI: 10.1515/jci-2022-0016
Download full text from publisher
References listed on IDEAS
- Imai, Kosuke & Strauss, Aaron, 2011. "Estimation of Heterogeneous Treatment Effects from Randomized Experiments, with Application to the Optimal Planning of the Get-Out-the-Vote Campaign," Political Analysis, Cambridge University Press, vol. 19(1), pages 1-19, January.
- Alberto Abadie & Matthew M. Chingos & Martin R. West, 2018.
"Endogenous Stratification in Randomized Experiments,"
The Review of Economics and Statistics, MIT Press, vol. 100(4), pages 567-580, October.
- Alberto Abadie & Matthew M. Chingos & Martin R. West, 2013. "Endogenous Stratification in Randomized Experiments," NBER Working Papers 19742, National Bureau of Economic Research, Inc.
- Keele, Luke, 2015. "The Statistics of Causal Inference: A View from Political Methodology," Political Analysis, Cambridge University Press, vol. 23(3), pages 313-335, July.
- Rajeev H. Dehejia & Sadek Wahba, 2002.
"Propensity Score-Matching Methods For Nonexperimental Causal Studies,"
The Review of Economics and Statistics, MIT Press, vol. 84(1), pages 151-161, February.
- Rajeev H. Dehejia & Sadek Wahba, 1998. "Propensity Score Matching Methods for Non-experimental Causal Studies," NBER Working Papers 6829, National Bureau of Economic Research, Inc.
- Guido W. Imbens, 2004.
"Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review,"
The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
- Guido W. Imbens, 2003. "Nonparametric Estimation of Average Treatment Effects under Exogeneity: A Review," NBER Technical Working Papers 0294, National Bureau of Economic Research, Inc.
- Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Plamen Nikolov & Hongjian Wang & Kevin Acker, 2020.
"Wage premium of Communist Party membership: Evidence from China,"
Pacific Economic Review, Wiley Blackwell, vol. 25(3), pages 309-338, August.
- Wang, Hongjian & Nikolov, Plamen & Acker, Kevin, 2019. "The Wage Premium of Communist Party Membership: Evidence from China," IZA Discussion Papers 12874, Institute of Labor Economics (IZA).
- Plamen Nikolov & Hongjian Wang & Kevin Acker, 2020. "The Wage Premium of Communist Party Membership: Evidence from China," Papers 2007.13549, arXiv.org.
- Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
- Goller, Daniel & Lechner, Michael & Moczall, Andreas & Wolff, Joachim, 2020.
"Does the estimation of the propensity score by machine learning improve matching estimation? The case of Germany's programmes for long term unemployed,"
Labour Economics, Elsevier, vol. 65(C).
- Goller, Daniel & Lechner, Michael & Moczall, Andreas & Wolff, Joachim, 2019. "Does the estimation of the propensity score by machine learning improve matching estimation? The case of Germany’s programmes for long term unemployed," Economics Working Paper Series 1910, University of St. Gallen, School of Economics and Political Science.
- Goller, Daniel & Lechner, Michael & Moczall, Andreas & Wolff, Joachim, 2020. "Does the estimation of the propensity score by machine learning improve matching estimation? : The case of Germany's programmes for long term unemployed," IAB-Discussion Paper 202005, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
- Goller, Daniel & Lechner, Michael & Moczall, Andreas & Wolff, Joachim, 2019. "Does the Estimation of the Propensity Score by Machine Learning Improve Matching Estimation? The Case of Germany's Programmes for Long Term Unemployed," IZA Discussion Papers 12526, Institute of Labor Economics (IZA).
- Ferman, Bruno, 2021.
"Matching estimators with few treated and many control observations,"
Journal of Econometrics, Elsevier, vol. 225(2), pages 295-307.
- Ferman, Bruno, 2017. "Matching Estimators with Few Treated and Many Control Observations," MPRA Paper 78940, University Library of Munich, Germany.
- Bruno Ferman, 2019. "Matching Estimators with Few Treated and Many Control Observations," Papers 1909.05093, arXiv.org, revised Mar 2021.
- Brett R. Gordon & Florian Zettelmeyer & Neha Bhargava & Dan Chapsky, 2019. "A Comparison of Approaches to Advertising Measurement: Evidence from Big Field Experiments at Facebook," Marketing Science, INFORMS, vol. 38(2), pages 193-225, March.
- Delius, Antonia & Sterck, Olivier, 2024.
"Cash transfers and micro-enterprise performance: Theory and quasi-experimental evidence from Kenya,"
Journal of Development Economics, Elsevier, vol. 167(C).
- Olivier Sterck & Antonia Delius, 2020. "Cash Transfers and Micro-Enterprise Performance: Theory and Quasi-Experimental Evidence from Kenya," CSAE Working Paper Series 2020-09, Centre for the Study of African Economies, University of Oxford.
- Shu Yang & Yunshu Zhang, 2023. "Multiply robust matching estimators of average and quantile treatment effects," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(1), pages 235-265, March.
- Athey, Susan & Imbens, Guido W. & Metzger, Jonas & Munro, Evan, 2024.
"Using Wasserstein Generative Adversarial Networks for the design of Monte Carlo simulations,"
Journal of Econometrics, Elsevier, vol. 240(2).
- Susan Athey & Guido W. Imbens & Jonas Metzger & Evan M. Munro, 2019. "Using Wasserstein Generative Adversarial Networks for the Design of Monte Carlo Simulations," NBER Working Papers 26566, National Bureau of Economic Research, Inc.
- Susan Athey & Guido Imbens & Jonas Metzger & Evan Munro, 2019. "Using Wasserstein Generative Adversarial Networks for the Design of Monte Carlo Simulations," Papers 1909.02210, arXiv.org, revised Jul 2020.
- Marco Mariani & Fabrizia Mealli, 2018. "The Effects of R&D Subsidies to Small and Medium-Sized Enterprises. Evidence from a Regional Program," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 4(2), pages 249-281, July.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018.
"High-dimensional econometrics and regularized GMM,"
CeMMAP working papers
CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-Dimensional Econometrics and Regularized GMM," Papers 1806.01888, arXiv.org, revised Jun 2018.
- Turner, Alex J. & Fichera, Eleonora & Sutton, Matt, 2021. "The effects of in-utero exposure to influenza on mental health and mortality risk throughout the life-course," Economics & Human Biology, Elsevier, vol. 43(C).
- Dettmann, E. & Becker, C. & Schmeißer, C., 2011. "Distance functions for matching in small samples," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1942-1960, May.
- Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022.
"Covariate distribution balance via propensity scores,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
- Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2018. "Covariate Distribution Balance via Propensity Scores," Papers 1810.01370, arXiv.org, revised Apr 2020.
- Caloffi, Annalisa & Freo, Marzia & Ghinoi, Stefano & Mariani, Marco & Rossi, Federica, 2022. "Assessing the effects of a deliberate policy mix: The case of technology and innovation advisory services and innovation vouchers," Research Policy, Elsevier, vol. 51(6).
- Apps, Patricia & Mendolia, Silvia & Walker, Ian, 2013.
"The impact of pre-school on adolescents’ outcomes: Evidence from a recent English cohort,"
Economics of Education Review, Elsevier, vol. 37(C), pages 183-199.
- Apps, Patricia & Mendolia, Silvia & Walker, Ian, 2012. "The Impact of Pre-school on Adolescents' Outcomes: Evidence from a Recent English Cohort," IZA Discussion Papers 6971, Institute of Labor Economics (IZA).
- Shanike J. Smart & Solomon W. Polachek, 2024.
"COVID-19 vaccine and risk-taking,"
Journal of Risk and Uncertainty, Springer, vol. 68(1), pages 25-49, February.
- Smart, Shanike J. & Polachek, Solomon, 2024. "COVID-19 Vaccine and Risk-Taking," IZA Discussion Papers 16707, Institute of Labor Economics (IZA).
- Fatema, Naureen, 2019. "Can land title reduce low-intensity interhousehold conflict incidences and associated damages in eastern DRC?," World Development, Elsevier, vol. 123(C), pages 1-1.
- Elaine M. Wolf & Douglas A. Wolf, 2008. "Mixed Results in a Transitional Planning Program for Alternative School Students," Evaluation Review, , vol. 32(2), pages 187-215, April.
- Miet Maertens & Liesbeth Colen & Johan F. M. Swinnen, 2011.
"Globalisation and poverty in Senegal: a worst case scenario?,"
European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 38(1), pages 31-54, March.
- Maertens, Miet & Colen, Liesbeth & Swinnen, Johan F.M., 2009. "Globalization and Poverty in Senegal: A Worst Case Scenario?," 2009 Conference, August 16-22, 2009, Beijing, China 51668, International Association of Agricultural Economists.
- Anita Alves Pena, 2015. "The effect of continuing education participation on outcomes of male and female agricultural workers in the USA," Education Economics, Taylor & Francis Journals, vol. 23(6), pages 751-776, December.
More about this item
Keywords
observational data; subgroup treatment effects; regression tree; matching;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:causin:v:11:y:2023:i:1:p:25:n:1007. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.