IDEAS home Printed from https://ideas.repec.org/a/blg/journl/v6y2011i2p60-90.html
   My bibliography  Save this article

The Proposition Value Of Corporate Ratings - A Reliability Testing Of Corporate Ratings By Applying Roc And Cap Techniques

Author

Listed:
  • Lis Bettina

    (University of Mainz, Germany)

  • Nessler Christian

    (University of Mainz, Germany)

  • Retzmann Jan

    (Deutsche Pfandbriefbank, Germany)

Abstract

We analyze the Altman model, a Logit model as well as the KMV model in order to evaluate their performance. Therefore, we use a random sample of 132 US firms. We create a yearly and a quarterly sample set to construct a portfolio of defaulting and a counter portfolio of non-defaulting companies. As we stay close to the recommendations of the Basel Capital Accord framework in order to evaluate the models, we use Receiver Operating Characteristic (ROC) and Cumulative Accuracy Profile (CAP) techniques. We find that the Logit model outperforms the Altman as well as the KMV model. Furthermore, we find that the Altman model outperforms the KMV model, which is nearly as accurate as a random model.

Suggested Citation

  • Lis Bettina & Nessler Christian & Retzmann Jan, 2011. "The Proposition Value Of Corporate Ratings - A Reliability Testing Of Corporate Ratings By Applying Roc And Cap Techniques," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 6(2), pages 60-90, August.
  • Handle: RePEc:blg:journl:v:6:y:2011:i:2:p:60-90
    as

    Download full text from publisher

    File URL: http://eccsf.ulbsibiu.ro/RePEc/blg/journl/626Lis&Nessler&Retzmann.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    2. Stephen Satchel & Wei Xia, 2006. "Analytic Models of the ROC Curve: Applications to Credit Rating Model Validation," Research Paper Series 181, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. Barniv, Ran & McDonald, James B, 1999. "Review of Categorical Models for Classification Issues in Accounting and Finance," Review of Quantitative Finance and Accounting, Springer, vol. 13(1), pages 39-62, July.
    4. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    5. Blochlinger, Andreas & Leippold, Markus, 2006. "Economic benefit of powerful credit scoring," Journal of Banking & Finance, Elsevier, vol. 30(3), pages 851-873, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bauer, Julian & Agarwal, Vineet, 2014. "Are hazard models superior to traditional bankruptcy prediction approaches? A comprehensive test," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 432-442.
    2. Giordani, Paolo & Jacobson, Tor & Schedvin, Erik von & Villani, Mattias, 2014. "Taking the Twists into Account: Predicting Firm Bankruptcy Risk with Splines of Financial Ratios," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(4), pages 1071-1099, August.
    3. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    4. Trueck, Stefan & Rachev, Svetlozar T., 2008. "Rating Based Modeling of Credit Risk," Elsevier Monographs, Elsevier, edition 1, number 9780123736833.
    5. John Y. Campbell & Jens Hilscher & Jan Szilagyi, 2008. "In Search of Distress Risk," Journal of Finance, American Finance Association, vol. 63(6), pages 2899-2939, December.
    6. Koresh Galil & Neta Gilat, 2019. "Predicting Default More Accurately: To Proxy or Not to Proxy for Default?," International Review of Finance, International Review of Finance Ltd., vol. 19(4), pages 731-758, December.
    7. Ahsan Habib & Mabel D' Costa & Hedy Jiaying Huang & Md. Borhan Uddin Bhuiyan & Li Sun, 2020. "Determinants and consequences of financial distress: review of the empirical literature," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(S1), pages 1023-1075, April.
    8. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    9. Giesecke, Kay & Longstaff, Francis A. & Schaefer, Stephen & Strebulaev, Ilya, 2011. "Corporate bond default risk: A 150-year perspective," Journal of Financial Economics, Elsevier, vol. 102(2), pages 233-250.
    10. Mousavi, Mohammad M. & Ouenniche, Jamal & Xu, Bing, 2015. "Performance evaluation of bankruptcy prediction models: An orientation-free super-efficiency DEA-based framework," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 64-75.
    11. Agarwal, Vineet & Taffler, Richard, 2008. "Comparing the performance of market-based and accounting-based bankruptcy prediction models," Journal of Banking & Finance, Elsevier, vol. 32(8), pages 1541-1551, August.
    12. Ken Li, 2024. "Liquidity ratios and corporate failures," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 64(1), pages 1111-1134, March.
    13. Tsung-Kang Chen & Hsien-Hsing Liao & Chia-Wu Lu, 2011. "A flow-based corporate credit model," Review of Quantitative Finance and Accounting, Springer, vol. 36(4), pages 517-532, May.
    14. Duffie, Darrell & Saita, Leandro & Wang, Ke, 2007. "Multi-period corporate default prediction with stochastic covariates," Journal of Financial Economics, Elsevier, vol. 83(3), pages 635-665, March.
    15. Wolfgang K. Härdle & Rouslan A. Moro & Dorothea Schäfer, 2004. "Rating Companies with Support Vector Machines," Discussion Papers of DIW Berlin 416, DIW Berlin, German Institute for Economic Research.
    16. Kroot, Jan & Giouvris, Evangelos, 2016. "Dutch mortgages: Impact of the crisis on probability of default," Finance Research Letters, Elsevier, vol. 18(C), pages 205-217.
    17. Hamadi Matoussi & Aida Abdelmoula, 2008. "Using A Neural Network-Based Methodology for Credit–Risk Evaluation of A Tunisian Bank," Working Papers 408, Economic Research Forum, revised 06 Jan 2008.
    18. Yung-Ho Chiu & Yu-Chuan Chen & Yu Han Hung, 2009. "Basel II and bank bankruptcy analysis," Applied Economics Letters, Taylor & Francis Journals, vol. 16(18), pages 1843-1847.
    19. Charitou, Andreas & Dionysiou, Dionysia & Lambertides, Neophytos & Trigeorgis, Lenos, 2013. "Alternative bankruptcy prediction models using option-pricing theory," Journal of Banking & Finance, Elsevier, vol. 37(7), pages 2329-2341.
    20. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:blg:journl:v:6:y:2011:i:2:p:60-90. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mihaela Herciu (email available below). General contact details of provider: https://edirc.repec.org/data/feulbro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.