IDEAS home Printed from https://ideas.repec.org/a/sae/jodepp/v7y2022i1p31-52.html
   My bibliography  Save this article

A Bivariate Analysis of the Spatial Distributions of Stunting and Wasting Among Children Under-Five in Nigeria

Author

Listed:
  • Samson B. Adebayo
  • Ezra Gayawan

Abstract

Stunting and wasting are major malnutrition issues among children under five years of age and have continued to remain unacceptably high in Nigeria leading to high rates of child morbidity and mortality. Evidence-based strategies are required by government and non-governmental agencies to mitigate the suffering of these children, and this could be realised when the association between the determinants and the geographical distributions are fully understood. Using data from four waves of the Nigerian Demographic and Health Survey, we employed a distributional bivariate probit model to examine the geographical distributions of the levels and linear association between acute and chronic malnutrition in Nigeria after accounting for possible observed determinants. Bayesian inference was based on Markov chain Monte Carlo simulation. The findings reveal substantial spatial variations in stunting and wasting among under-five children in Nigeria, indicating a north–south divide. The findings show negative linear association between the two malnutrition indicators among children in some northern fringe states but positive for Akwa Ibom, Ebonyi and Anambra. The correlation also peaks around age 20 months indicating that during the first 2 years of life, the children have an increasing likelihood of suffering from stunting and wasting.

Suggested Citation

  • Samson B. Adebayo & Ezra Gayawan, 2022. "A Bivariate Analysis of the Spatial Distributions of Stunting and Wasting Among Children Under-Five in Nigeria," Journal of Development Policy and Practice, , vol. 7(1), pages 31-52, January.
  • Handle: RePEc:sae:jodepp:v:7:y:2022:i:1:p:31-52
    DOI: 10.1177/24551333211051433
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/24551333211051433
    Download Restriction: no

    File URL: https://libkey.io/10.1177/24551333211051433?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Senayit Seyoum, 2018. "Analysis of Prevalence of Malaria and Anemia Using Bivariate Probit Model," Annals of Data Science, Springer, vol. 5(2), pages 301-312, June.
    2. Samson B. Adebayo, 2003. "Modelling childhood malnutrition in Zambia: an adaptive Bayesian splines approach," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 12(2), pages 227-241, December.
    3. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    4. Osafu Augustine Egbon & Omodolapo Somo-Aina & Ezra Gayawan, 2021. "Spatial Weighted Analysis of Malnutrition Among Children in Nigeria: A Bayesian Approach," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(3), pages 495-523, December.
    5. Stephan Klasen, 1996. "Nutrition, health and mortality in sub‐Saharan Africa: Is there a gender bias?," Journal of Development Studies, Taylor & Francis Journals, vol. 32(6), pages 913-932.
    6. Brezger, Andreas & Lang, Stefan, 2006. "Generalized structured additive regression based on Bayesian P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 967-991, February.
    7. R. A. Rigby & D. M. Stasinopoulos, 2005. "Generalized additive models for location, scale and shape," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(3), pages 507-554, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nadja Klein & Thomas Kneib & Stefan Lang, 2015. "Bayesian Generalized Additive Models for Location, Scale, and Shape for Zero-Inflated and Overdispersed Count Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 405-419, March.
    2. Klein, Nadja & Denuit, Michel & Lang, Stefan & Kneib, Thomas, 2013. "Nonlife Ratemaking and Risk Management with Bayesian Additive Models for Location, Scale and Shape," LIDAM Discussion Papers ISBA 2013045, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Alexander Razen & Stefan Lang, 2016. "Random Scaling Factors in Bayesian Distributional Regression Models with an Application to Real Estate Data," Working Papers 2016-30, Faculty of Economics and Statistics, Universität Innsbruck.
    4. Wu, Ji & Guo, Mengmeng & Chen, Minghua & Jeon, Bang Nam, 2019. "Market power and risk-taking of banks: Some semiparametric evidence from emerging economies," Emerging Markets Review, Elsevier, vol. 41(C).
    5. Jullion, Astrid & Lambert, Philippe, 2007. "Robust specification of the roughness penalty prior distribution in spatially adaptive Bayesian P-splines models," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2542-2558, February.
    6. Jamie Roberman & Theophilus I. Emeto & Oyelola A. Adegboye, 2021. "Adverse Birth Outcomes Due to Exposure to Household Air Pollution from Unclean Cooking Fuel among Women of Reproductive Age in Nigeria," IJERPH, MDPI, vol. 18(2), pages 1-15, January.
    7. Vicente G. Cancho & Gladys D. C. Barriga & Gauss M. Cordeiro & Edwin M. M. Ortega & Adriano K. Suzuki, 2021. "Bayesian survival model induced by frailty for lifetime with long‐term survivors," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(3), pages 299-323, August.
    8. Chibuzor Christopher Nnanatu & Glory Atilola & Paul Komba & Lubanzadio Mavatikua & Zhuzhi Moore & Dennis Matanda & Otibho Obianwu & Ngianga-Bakwin Kandala, 2021. "Evaluating changes in the prevalence of female genital mutilation/cutting among 0-14 years old girls in Nigeria using data from multiple surveys: A novel Bayesian hierarchical spatio-temporal model," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-31, February.
    9. Nikolaus Umlauf & Nadja Klein & Achim Zeileis, 2017. "BAMLSS: Bayesian Additive Models for Location, Scale and Shape (and Beyond)," Working Papers 2017-05, Faculty of Economics and Statistics, Universität Innsbruck.
    10. Thaden, Hauke & Klein, Nadja & Kneib, Thomas, 2019. "Multivariate effect priors in bivariate semiparametric recursive Gaussian models," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 51-66.
    11. Paul F. V. Wiemann & Thomas Kneib & Julien Hambuckers, 2024. "Using the softplus function to construct alternative link functions in generalized linear models and beyond," Statistical Papers, Springer, vol. 65(5), pages 3155-3180, July.
    12. Duchwan Ryu & Erning Li & Bani K. Mallick, 2011. "Bayesian Nonparametric Regression Analysis of Data with Random Effects Covariates from Longitudinal Measurements," Biometrics, The International Biometric Society, vol. 67(2), pages 454-466, June.
    13. Stefan Lang & Nikolaus Umlauf & Peter Wechselberger & Kenneth Harttgen & Thomas Kneib, 2012. "Multilevel structured additive regression," Working Papers 2012-07, Faculty of Economics and Statistics, Universität Innsbruck.
    14. Alexander März & Nadja Klein & Thomas Kneib & Oliver Musshoff, 2016. "Analysing farmland rental rates using Bayesian geoadditive quantile regression," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 43(4), pages 663-698.
    15. Wiemann, Paul F.V. & Klein, Nadja & Kneib, Thomas, 2022. "Correcting for sample selection bias in Bayesian distributional regression models," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    16. Thomas Kneib & Nadja Klein & Stefan Lang & Nikolaus Umlauf, 2019. "Modular regression - a Lego system for building structured additive distributional regression models with tensor product interactions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 1-39, March.
    17. Ezra Gayawan & Funmilayo Adenike Fadiji, 2021. "Joint Spatial Modelling of Childhood Morbidity in West Africa Using a Distributional Bivariate Probit Model," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(1), pages 56-76, April.
    18. Nicole H. Augustin & Stefan Lang & Monica Musio & Klaus Von Wilpert, 2007. "A spatial model for the needle losses of pine‐trees in the forests of Baden‐Württemberg: an application of Bayesian structured additive regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 56(1), pages 29-50, January.
    19. Marco Berrettini & Giuliano Galimberti & Saverio Ranciati, 2023. "Semiparametric finite mixture of regression models with Bayesian P-splines," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(3), pages 745-775, September.
    20. Francesca Bruno & Fedele Greco & Massimo Ventrucci, 2016. "Non-parametric regression on compositional covariates using Bayesian P-splines," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 75-88, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jodepp:v:7:y:2022:i:1:p:31-52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.