IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v80y2002i1p101-126.html
   My bibliography  Save this article

Bayesian Inference for Multivariate Survival Data with a Cure Fraction

Author

Listed:
  • Chen, Ming-Hui
  • Ibrahim, Joseph G.
  • Sinha, Debajyoti

Abstract

We develop Bayesian methods for right censored multivariate failure time data for populations with a cure fraction. We propose a new model, called the multivariate cure rate model, and provide a natural motivation and interpretation of it. To create the correlation structure between the failure times, we introduce a frailty term, which is assumed to have a positive stable distribution. The resulting correlation structure induced by the frailty term is quite appealing and leads to a nice characterization of the association between the failure times. Several novel properties of the model are derived. First, conditional on the frailty term, it is shown that the model has a proportional hazards structure with the covariates depending naturally on the cure rate. Second, we establish mathematical relationships between the marginal survivor functions of the multivariate cure rate model and the more standard mixture model for modelling cure rates. With the introduction of latent variables, we show that the new model is computationally appealing, and novel computational Markov chain Monte Carlo (MCMC) methods are developed to sample from the posterior distribution of the parameters. Specifically, we propose a modified version of the collapsed Gibbs technique (J. S. Liu, 1994, J. Amer. Statist. Assoc.89, 958-966) to sample from the posterior distribution. This development will lead to an efficient Gibbs sampling procedure, which would otherwise be extremely difficult. We characterize the propriety of the joint posterior distribution of the parameters using a class of noninformative improper priors. A real dataset from a melanoma clinical trial is presented to illustrate the methodology.

Suggested Citation

  • Chen, Ming-Hui & Ibrahim, Joseph G. & Sinha, Debajyoti, 2002. "Bayesian Inference for Multivariate Survival Data with a Cure Fraction," Journal of Multivariate Analysis, Elsevier, vol. 80(1), pages 101-126, January.
  • Handle: RePEc:eee:jmvana:v:80:y:2002:i:1:p:101-126
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(00)91975-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zuqiang Qiou & Nalini Ravishanker & Dipak K. Dey, 1999. "Multivariate Survival Analysis with Positive Stable Frailties," Biometrics, The International Biometric Society, vol. 55(2), pages 637-644, June.
    2. Judy P. Sy & Jeremy M. G. Taylor, 2000. "Estimation in a Cox Proportional Hazards Cure Model," Biometrics, The International Biometric Society, vol. 56(1), pages 227-236, March.
    3. Asselain, B. & Fourquet, A. & Hoang, T. & Tsodikov, A. D. & Yakovlev, A. Yu., 1996. "A parametric regression model of tumor recurrence: An application to the analysis of clinical data on breast cancer," Statistics & Probability Letters, Elsevier, vol. 29(3), pages 271-278, September.
    4. W. R. Gilks & P. Wild, 1992. "Adaptive Rejection Sampling for Gibbs Sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 337-348, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Huang & Haiming Zhou & Nader Ebrahimi, 2022. "Bayesian Bivariate Cure Rate Models Using Copula Functions," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 11(3), pages 1-9, May.
    2. Hongtu Zhu & Joseph G. Ibrahim & Yueh-Yun Chi & Niansheng Tang, 2012. "Bayesian Influence Measures for Joint Models for Longitudinal and Survival Data," Biometrics, The International Biometric Society, vol. 68(3), pages 954-964, September.
    3. Borges, Patrick & Rodrigues, Josemar & Balakrishnan, Narayanaswamy, 2012. "Correlated destructive generalized power series cure rate models and associated inference with an application to a cutaneous melanoma data," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1703-1713.
    4. Carvalho Lopes, Celia Mendes & Bolfarine, Heleno, 2012. "Random effects in promotion time cure rate models," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 75-87, January.
    5. Chen, Chyong-Mei & Lu, Tai-Fang C., 2012. "Marginal analysis of multivariate failure time data with a surviving fraction based on semiparametric transformation cure models," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 645-655.
    6. Tang, Nian-Sheng & Tang, An-Min & Pan, Dong-Dong, 2014. "Semiparametric Bayesian joint models of multivariate longitudinal and survival data," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 113-129.
    7. Guosheng Yin, 2005. "Bayesian Cure Rate Frailty Models with Application to a Root Canal Therapy Study," Biometrics, The International Biometric Society, vol. 61(2), pages 552-558, June.
    8. Niu, Yi & Peng, Yingwei, 2014. "Marginal regression analysis of clustered failure time data with a cure fraction," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 129-142.
    9. Vicente G. Cancho & Gladys D. C. Barriga & Gauss M. Cordeiro & Edwin M. M. Ortega & Adriano K. Suzuki, 2021. "Bayesian survival model induced by frailty for lifetime with long‐term survivors," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(3), pages 299-323, August.
    10. Yu, Binbing & Peng, Yingwei, 2008. "Mixture cure models for multivariate survival data," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1524-1532, January.
    11. Lajmi Lakhal-Chaieb & Thierry Duchesne, 2017. "Association measures for bivariate failure times in the presence of a cure fraction," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 517-532, October.
    12. Michael L. Pennell & David B. Dunson, 2006. "Bayesian Semiparametric Dynamic Frailty Models for Multiple Event Time Data," Biometrics, The International Biometric Society, vol. 62(4), pages 1044-1052, December.
    13. Guoqing Diao & Guosheng Yin, 2012. "A general transformation class of semiparametric cure rate frailty models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 959-989, October.
    14. Sudipto Banerjee & Bradley P. Carlin, 2004. "Parametric Spatial Cure Rate Models for Interval-Censored Time-to-Relapse Data," Biometrics, The International Biometric Society, vol. 60(1), pages 268-275, March.
    15. Yeqian Liu & Tao Hu & Jianguo Sun, 2017. "Regression analysis of current status data in the presence of a cured subgroup and dependent censoring," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 626-650, October.
    16. Yueh-Yun Chi & Joseph G. Ibrahim, 2006. "Joint Models for Multivariate Longitudinal and Multivariate Survival Data," Biometrics, The International Biometric Society, vol. 62(2), pages 432-445, June.
    17. Vicente G. Cancho & Dipak K. Dey & Francisco Louzada, 2016. "Unified multivariate survival model with a surviving fraction: an application to a Brazilian customer churn data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(3), pages 572-584, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guosheng Yin, 2005. "Bayesian Cure Rate Frailty Models with Application to a Root Canal Therapy Study," Biometrics, The International Biometric Society, vol. 61(2), pages 552-558, June.
    2. Chen, Ming-Hui & Ibrahim, Joseph G. & Sinha, Debajyoti, 2004. "A new joint model for longitudinal and survival data with a cure fraction," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 18-34, October.
    3. Carvalho Lopes, Celia Mendes & Bolfarine, Heleno, 2012. "Random effects in promotion time cure rate models," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 75-87, January.
    4. Pang, W. K. & Yang, Z. H. & Hou, S. H. & Leung, P. K., 2002. "Non-uniform random variate generation by the vertical strip method," European Journal of Operational Research, Elsevier, vol. 142(3), pages 595-609, November.
    5. Narisetty, Naveen & Koenker, Roger, 2022. "Censored quantile regression survival models with a cure proportion," Journal of Econometrics, Elsevier, vol. 226(1), pages 192-203.
    6. Z. Rezaei Ghahroodi & M. Ganjali, 2013. "A Bayesian approach for analysing longitudinal nominal outcomes using random coefficients transitional generalized logit model: an application to the labour force survey data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(7), pages 1425-1445, July.
    7. Suvra Pal & N. Balakrishnan, 2017. "Likelihood inference for the destructive exponentially weighted Poisson cure rate model with Weibull lifetime and an application to melanoma data," Computational Statistics, Springer, vol. 32(2), pages 429-449, June.
    8. Antonello Loddo & Shawn Ni & Dongchu Sun, 2011. "Selection of Multivariate Stochastic Volatility Models via Bayesian Stochastic Search," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 342-355, July.
    9. Xu, Linzhi & Zhang, Jiajia, 2010. "Multiple imputation method for the semiparametric accelerated failure time mixture cure model," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1808-1816, July.
    10. Nandram, Balgobin & Zelterman, Daniel, 2007. "Computational Bayesian inference for estimating the size of a finite population," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2934-2945, March.
    11. Chen, Chyong-Mei & Lu, Tai-Fang C., 2012. "Marginal analysis of multivariate failure time data with a surviving fraction based on semiparametric transformation cure models," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 645-655.
    12. Fuentes-García, Ruth & Mena, Ramsés H. & Walker, Stephen G., 2009. "A nonparametric dependent process for Bayesian regression," Statistics & Probability Letters, Elsevier, vol. 79(8), pages 1112-1119, April.
    13. Nalini Ravishanker & Dipak K. Dey, 2000. "Multivariate Survival Models with a Mixture of Positive Stable Frailties," Methodology and Computing in Applied Probability, Springer, vol. 2(3), pages 293-308, September.
    14. Deschamps, Philippe J., 2012. "Bayesian estimation of generalized hyperbolic skewed student GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3035-3054.
    15. Hattam, Caroline & Holloway, Garth J., 2007. "Bayes Estimates of Time to Organic Certification," 81st Annual Conference, April 2-4, 2007, Reading University, UK 7979, Agricultural Economics Society.
    16. Peter F. Thall & Lurdes Y. T. Inoue & Thomas G. Martin, 2002. "Adaptive Decision Making in a Lymphocyte Infusion Trial," Biometrics, The International Biometric Society, vol. 58(3), pages 560-568, September.
    17. M. Ghosh & B. Carlin & M. Srivastava, 1995. "Probability matching priors for linear calibration," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 4(2), pages 333-357, December.
    18. Pang, Wan Kai & Yu, Bosco Wing-Tong & Troutt, Marvin D. & Hou, Shui Hung, 2008. "A simulation-based approach to the study of coefficient of variation of dividend yields," European Journal of Operational Research, Elsevier, vol. 189(2), pages 559-569, September.
    19. Guoqing Diao & Ao Yuan, 2019. "A class of semiparametric cure models with current status data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 26-51, January.
    20. Ana López-Cheda & Yingwei Peng & María Amalia Jácome, 2023. "Nonparametric estimation in mixture cure models with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 467-495, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:80:y:2002:i:1:p:101-126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.