IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v50y2023i3p1068-1089.html
   My bibliography  Save this article

State estimation for aoristic models

Author

Listed:
  • Maria N. M. van Lieshout
  • Robin L. Markwitz

Abstract

Aoristic data can be described by a marked point process in time in which the points cannot be observed directly but are known to lie in observable intervals, the marks. We consider Bayesian state estimation for the latent points when the marks are modeled in terms of an alternating renewal process in equilibrium and the prior is a Markov point process. We derive the posterior distribution, estimate its parameters and present some examples that illustrate the influence of the prior distribution. The model is then used to estimate times of occurrence of interval censored crimes.

Suggested Citation

  • Maria N. M. van Lieshout & Robin L. Markwitz, 2023. "State estimation for aoristic models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(3), pages 1068-1089, September.
  • Handle: RePEc:bla:scjsta:v:50:y:2023:i:3:p:1068-1089
    DOI: 10.1111/sjos.12619
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12619
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12619?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Roberts, G. O. & Smith, A. F. M., 1994. "Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms," Stochastic Processes and their Applications, Elsevier, vol. 49(2), pages 207-216, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ranjan, Rakesh & Sen, Rijji & Upadhyay, Satyanshu K., 2021. "Bayes analysis of some important lifetime models using MCMC based approaches when the observations are left truncated and right censored," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    2. Tsionas, Mike G., 2021. "Bayesian forecasting with the structural damped trend model," International Journal of Production Economics, Elsevier, vol. 234(C).
    3. Tsionas, Mike G., 2019. "Multi-objective optimization using statistical models," European Journal of Operational Research, Elsevier, vol. 276(1), pages 364-378.
    4. Yu, Jun, 2012. "A semiparametric stochastic volatility model," Journal of Econometrics, Elsevier, vol. 167(2), pages 473-482.
    5. Gordon, Stephen & St-Amour, Pascal, 1997. "Asset Prices with Contingent Preferences," Cahiers de recherche 9712, Université Laval - Département d'économique, revised 08 Jun 1998.
    6. Efthymios G. Tsionas, 2006. "Inference in dynamic stochastic frontier models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 669-676, July.
    7. Fernández, C. & Steel, M.F.J., 1997. "On the Dangers of Modelling through Continuous Distributions : A Bayesian Perspective," Other publications TiSEM 53bef46d-6511-4d09-9018-d, Tilburg University, School of Economics and Management.
    8. Lei, Kaixuan & Chang, Jianxia & Long, Ruihao & Wang, Yimin & Zhang, Hongxue, 2022. "Cascade hydropower station risk operation under the condition of inflow uncertainty," Energy, Elsevier, vol. 244(PA).
    9. Fernández, Carmen & Steel, Mark F.J., 2000. "Bayesian Regression Analysis With Scale Mixtures Of Normals," Econometric Theory, Cambridge University Press, vol. 16(1), pages 80-101, February.
    10. Chan, Jennifer S.K. & Leung, Doris Y.P. & Boris Choy, S.T. & Wan, Wai Y., 2009. "Nonignorable dropout models for longitudinal binary data with random effects: An application of Monte Carlo approximation through the Gibbs output," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4530-4545, October.
    11. Gordon, Stephen & Bélanger, Gilles, 1996. "Échantillonnage de Gibbs et autres applications économétriques des chaînes markoviennes," L'Actualité Economique, Société Canadienne de Science Economique, vol. 72(1), pages 27-49, mars.
    12. Jason R. W. Merrick, 2008. "Getting the Right Mix of Experts," Decision Analysis, INFORMS, vol. 5(1), pages 43-52, March.
    13. Efthymios G. Tsionas, 2002. "Stochastic frontier models with random coefficients," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(2), pages 127-147.
    14. Joris de Wind & Luca Gambetti, 2014. "Reduced-rank time-varying vector autoregressions," CPB Discussion Paper 270.rdf, CPB Netherlands Bureau for Economic Policy Analysis.
    15. Lahiri, Kajal & Gao, Jian, 2002. "Bayesian analysis of nested logit model by Markov chain Monte Carlo," Journal of Econometrics, Elsevier, vol. 111(1), pages 103-133, November.
    16. John Geweke, 1999. "Using simulation methods for bayesian econometric models: inference, development,and communication," Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 1-73.
    17. Kleibergen, Frank & van Dijk, Herman K., 1998. "Bayesian Simultaneous Equations Analysis Using Reduced Rank Structures," Econometric Theory, Cambridge University Press, vol. 14(6), pages 701-743, December.
    18. Joris de Wind & Luca Gambetti, 2014. "Reduced-rank time-varying vector autoregressions," CPB Discussion Paper 270, CPB Netherlands Bureau for Economic Policy Analysis.
    19. Sadat, Nafis, 2015. "Estimation of International Financial Integration: Evidence from European Countries," MPRA Paper 66283, University Library of Munich, Germany, revised 25 Aug 2015.
    20. Sabourin, Anne & Naveau, Philippe, 2014. "Bayesian Dirichlet mixture model for multivariate extremes: A re-parametrization," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 542-567.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:50:y:2023:i:3:p:1068-1089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.