IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v49y2022i4p1860-1888.html
   My bibliography  Save this article

Efficient semiparametric estimation of time‐censored intensity‐reduction models for repairable systems

Author

Listed:
  • Jinyang Wang
  • Piao Chen
  • Zhisheng Ye

Abstract

The rate reduction models have been widely used to model the recurrent failure data for their capabilities in quantifying the repair effects. Despite the widespread popularity, there have been limited studies on statistical inference of most failure rate reduction models. In view of this fact, this study proposes a semiparametric estimation framework for a general class of such models, called extended geometric failure rate reduction (EGFRR) models. Covariates are considered in our analysis and their effects are modeled as a log‐linear factor on the baseline failure rate. Unlike the existing inference methods for the EGFRR models that assume the failure data are censored at a fixed number of failures, our study considers covariates and time‐censoring, which are more common in practice. The semiparametric maximum likelihood (ML) estimators are obtained by carefully constructing the likelihood function. Asymptotic properties including consistency and weak convergence of the ML estimators are established by using the properties of the martingale process. In addition, we show that the semiparametric estimators are asymptotically efficient. A real example from the automobile industry illustrates the usefulness of the proposed framework and extensive simulations show its outstanding performance when comparing with the existing methods.

Suggested Citation

  • Jinyang Wang & Piao Chen & Zhisheng Ye, 2022. "Efficient semiparametric estimation of time‐censored intensity‐reduction models for repairable systems," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1860-1888, December.
  • Handle: RePEc:bla:scjsta:v:49:y:2022:i:4:p:1860-1888
    DOI: 10.1111/sjos.12564
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12564
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12564?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A.K.M. Fazlur Rahman & James D. Lynch & Edsel A. Peña, 2014. "Nonparametric Bayes estimation of gap-time distribution with recurrent event data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(3), pages 575-598, September.
    2. C.-Y. Huang & J. Qin & M.-C. Wang, 2010. "Semiparametric Analysis for Recurrent Event Data with Time-Dependent Covariates and Informative Censoring," Biometrics, The International Biometric Society, vol. 66(1), pages 39-49, March.
    3. Maxim Finkelstein, 2008. "Failure Rate Modelling for Reliability and Risk," Springer Series in Reliability Engineering, Springer, number 978-1-84800-986-8, June.
    4. D. Y. Lin & L. J. Wei & I. Yang & Z. Ying, 2000. "Semiparametric regression for the mean and rate functions of recurrent events," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 711-730.
    5. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, January.
    6. Fei Gao & Donglin Zeng & David Couper & D. Y. Lin, 2019. "Semiparametric Regression Analysis of Multiple Right- and Interval-Censored Events," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1232-1240, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoyu Wang & Liuquan Sun, 2023. "Joint modeling of generalized scale-change models for recurrent event and failure time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(1), pages 1-33, January.
    2. Yevkin, Alexander & Krivtsov, Vasiliy, 2020. "A generalized model for recurrent failures prediction," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    3. Wang, Shuying & Wang, Chunjie & Wang, Peijie & Sun, Jianguo, 2018. "Semiparametric analysis of the additive hazards model with informatively interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 1-9.
    4. Zhang, Feipeng & Peng, Heng & Zhou, Yong, 2016. "Composite partial likelihood estimation for length-biased and right-censored data with competing risks," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 160-176.
    5. Ye, Peng & Zhao, Xingqiu & Sun, Liuquan & Xu, Wei, 2015. "A semiparametric additive rates model for multivariate recurrent events with missing event categories," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 39-50.
    6. Laurent Davezies & Xavier D'Haultfoeuille & Yannick Guyonvarch, 2019. "Empirical Process Results for Exchangeable Arrays," Papers 1906.11293, arXiv.org, revised May 2020.
    7. Na Cai & Wenbin Lu & Hao Helen Zhang, 2012. "Time-Varying Latent Effect Model for Longitudinal Data with Informative Observation Times," Biometrics, The International Biometric Society, vol. 68(4), pages 1093-1102, December.
    8. Julie K. Furberg & Per K. Andersen & Sofie Korn & Morten Overgaard & Henrik Ravn, 2023. "Bivariate pseudo-observations for recurrent event analysis with terminal events," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 256-287, April.
    9. Alexander Frankel & Maximilian Kasy, 2022. "Which Findings Should Be Published?," American Economic Journal: Microeconomics, American Economic Association, vol. 14(1), pages 1-38, February.
    10. Gregory Levitin & Maxim Finkelstein, 2018. "Optimal Mission Abort Policy for Systems Operating in a Random Environment," Risk Analysis, John Wiley & Sons, vol. 38(4), pages 795-803, April.
    11. Kasy, Maximilian, 2011. "A nonparametric test for path dependence in discrete panel data," Economics Letters, Elsevier, vol. 113(2), pages 172-175.
    12. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "Mission abort policy optimization for series systems with overlapping primary and rescue subsystems operating in a random environment," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    13. Atı̇la Abdulkadı̇roğlu & Joshua D. Angrist & Yusuke Narita & Parag Pathak, 2022. "Breaking Ties: Regression Discontinuity Design Meets Market Design," Econometrica, Econometric Society, vol. 90(1), pages 117-151, January.
    14. Luofeng Liao & Christian Kroer, 2024. "Statistical Inference and A/B Testing in Fisher Markets and Paced Auctions," Papers 2406.15522, arXiv.org, revised Aug 2024.
    15. Waverly Wei & Maya Petersen & Mark J van der Laan & Zeyu Zheng & Chong Wu & Jingshen Wang, 2023. "Efficient targeted learning of heterogeneous treatment effects for multiple subgroups," Biometrics, The International Biometric Society, vol. 79(3), pages 1934-1946, September.
    16. Yao, Haixiang & Huang, Jinbo & Li, Yong & Humphrey, Jacquelyn E., 2021. "A general approach to smooth and convex portfolio optimization using lower partial moments," Journal of Banking & Finance, Elsevier, vol. 129(C).
    17. Ji Hwan Cha & Maxim Finkelstein, 2019. "New failure and minimal repair processes for repairable systems in a random environment," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 35(3), pages 522-536, May.
    18. Xiaowei Sun & Jieli Ding & Liuquan Sun, 2020. "A semiparametric additive rates model for the weighted composite endpoint of recurrent and terminal events," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 471-492, July.
    19. Luo, Yu & Graham, Daniel J. & McCoy, Emma J., 2023. "Semiparametric Bayesian doubly robust causal estimation," LSE Research Online Documents on Economics 117944, London School of Economics and Political Science, LSE Library.
    20. Maxim S. Finkelstein, 2008. "On systems with shared resources and optimal switching strategies," MPIDR Working Papers WP-2008-025, Max Planck Institute for Demographic Research, Rostock, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:49:y:2022:i:4:p:1860-1888. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.