IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v114y2019i527p1232-1240.html
   My bibliography  Save this article

Semiparametric Regression Analysis of Multiple Right- and Interval-Censored Events

Author

Listed:
  • Fei Gao
  • Donglin Zeng
  • David Couper
  • D. Y. Lin

Abstract

Health sciences research often involves both right- and interval-censored events because the occurrence of a symptomatic disease can only be observed up to the end of follow-up, while the occurrence of an asymptomatic disease can only be detected through periodic examinations. We formulate the effects of potentially time-dependent covariates on the joint distribution of multiple right- and interval-censored events through semiparametric proportional hazards models with random effects that capture the dependence both within and between the two types of events. We consider nonparametric maximum likelihood estimation and develop a simple and stable EM algorithm for computation. We show that the resulting estimators are consistent and the parametric components are asymptotically normal and efficient with a covariance matrix that can be consistently estimated by profile likelihood or nonparametric bootstrap. In addition, we leverage the joint modelling to provide dynamic prediction of disease incidence based on the evolving event history. Furthermore, we assess the performance of the proposed methods through extensive simulation studies. Finally, we provide an application to a major epidemiological cohort study. Supplementary materials for this article are available online.

Suggested Citation

  • Fei Gao & Donglin Zeng & David Couper & D. Y. Lin, 2019. "Semiparametric Regression Analysis of Multiple Right- and Interval-Censored Events," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1232-1240, July.
  • Handle: RePEc:taf:jnlasa:v:114:y:2019:i:527:p:1232-1240
    DOI: 10.1080/01621459.2018.1482756
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2018.1482756
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2018.1482756?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinyang Wang & Piao Chen & Zhisheng Ye, 2022. "Efficient semiparametric estimation of time‐censored intensity‐reduction models for repairable systems," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1860-1888, December.
    2. Shuwei Li & Limin Peng, 2023. "Instrumental variable estimation of complier causal treatment effect with interval‐censored data," Biometrics, The International Biometric Society, vol. 79(1), pages 253-263, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:114:y:2019:i:527:p:1232-1240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.