IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v18y2016i1d10.1007_s11009-014-9420-9.html
   My bibliography  Save this article

Analysis of a Multivariate Claim Process

Author

Listed:
  • Qi-Ming He

    (University of Waterloo)

  • Jiandong Ren

    (University of Western Ontario)

Abstract

The first part of this paper introduces a class of discrete multivariate phase-type (MPH) distributions. Recursive formulas are found for joint probabilities. Explicit expressions are obtained for means, variances and co-variances. The discrete MPH-distributions are used in the second part of the paper to study multivariate insurance claim processes in risk analysis, where claims may arrive in batches, the arrivals of different types of batches may be correlated and the amounts of different types of claims in a batch may be dependent. Under certain conditions, it is shown that the total amounts of claims accumulated in some random time horizon are discrete MPH random vectors. Matrix-representations of the discrete MPH-distributions are constructed explicitly. Efficient computational methods are developed for computing risk measures of the total claims of different types of claim batches and individual types of claims (e.g., joint distribution, mean, variance, correlation and value at risk.)

Suggested Citation

  • Qi-Ming He & Jiandong Ren, 2016. "Analysis of a Multivariate Claim Process," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 257-273, March.
  • Handle: RePEc:spr:metcap:v:18:y:2016:i:1:d:10.1007_s11009-014-9420-9
    DOI: 10.1007/s11009-014-9420-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-014-9420-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-014-9420-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. V. G. Kulkarni, 1989. "A New Class of Multivariate Phase Type Distributions," Operations Research, INFORMS, vol. 37(1), pages 151-158, February.
    2. He, Qi-Ming & Neuts, Marcel F., 1998. "Markov chains with marked transitions," Stochastic Processes and their Applications, Elsevier, vol. 74(1), pages 37-52, May.
    3. Alexander Herbertsson, 2011. "Modelling default contagion using multivariate phase-type distributions," Review of Derivatives Research, Springer, vol. 14(1), pages 1-36, April.
    4. Cai, Jun & Li, Haijun, 2005. "Multivariate risk model of phase type," Insurance: Mathematics and Economics, Elsevier, vol. 36(2), pages 137-152, April.
    5. Li, Haijun, 2003. "Association of multivariate phase-type distributions, with applications to shock models," Statistics & Probability Letters, Elsevier, vol. 64(4), pages 381-392, October.
    6. David Assaf & Naftali A. Langberg & Thomas H. Savits & Moshe Shaked, 1984. "Multivariate Phase-Type Distributions," Operations Research, INFORMS, vol. 32(3), pages 688-702, June.
    7. V. Ramaswami & Douglas Woolford & David Stanford, 2008. "The erlangization method for Markovian fluid flows," Annals of Operations Research, Springer, vol. 160(1), pages 215-225, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ren Jiandong & Zitikis Ricardas, 2017. "CMPH: a multivariate phase-type aggregate loss distribution," Dependence Modeling, De Gruyter, vol. 5(1), pages 304-315, December.
    2. Bladt, Martin & Yslas, Jorge, 2023. "Robust claim frequency modeling through phase-type mixture-of-experts regression," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 1-22.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi-Ming He & Jiandong Ren, 2016. "Parameter Estimation of Discrete Multivariate Phase-Type Distributions," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 629-651, September.
    2. Hansjörg Albrecher & Mogens Bladt & Jorge Yslas, 2022. "Fitting inhomogeneous phase‐type distributions to data: the univariate and the multivariate case," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 44-77, March.
    3. Berdel, Jasmin & Hipp, Christian, 2011. "Convolutions of multivariate phase-type distributions," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 374-377, May.
    4. Cai, Jun & Li, Haijun, 2005. "Multivariate risk model of phase type," Insurance: Mathematics and Economics, Elsevier, vol. 36(2), pages 137-152, April.
    5. Cai, Jun & Li, Haijun, 2007. "Dependence properties and bounds for ruin probabilities in multivariate compound risk models," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 757-773, April.
    6. Surya, Budhi Arta, 2022. "Conditional multivariate distributions of phase-type for a finite mixture of Markov jump processes given observations of sample path," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
    7. Bo Friis Nielsen, 2022. "Characterisation of multivariate phase type distributions," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 229-231, April.
    8. Woo, Jae-Kyung, 2016. "On multivariate discounted compound renewal sums with time-dependent claims in the presence of reporting/payment delays," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 354-363.
    9. Ren Jiandong & Zitikis Ricardas, 2017. "CMPH: a multivariate phase-type aggregate loss distribution," Dependence Modeling, De Gruyter, vol. 5(1), pages 304-315, December.
    10. Li, Haijun, 2003. "Association of multivariate phase-type distributions, with applications to shock models," Statistics & Probability Letters, Elsevier, vol. 64(4), pages 381-392, October.
    11. Asimit, Alexandru V. & Jones, Bruce L., 2007. "Extreme behavior of multivariate phase-type distributions," Insurance: Mathematics and Economics, Elsevier, vol. 41(2), pages 223-233, September.
    12. Horváth, Gábor, 2015. "Efficient analysis of the MMAP[K]/PH[K]/1 priority queue," European Journal of Operational Research, Elsevier, vol. 246(1), pages 128-139.
    13. Cheung, Eric C.K. & Peralta, Oscar & Woo, Jae-Kyung, 2022. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 364-389.
    14. Badila, E.S. & Boxma, O.J. & Resing, J.A.C., 2015. "Two parallel insurance lines with simultaneous arrivals and risks correlated with inter-arrival times," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 48-61.
    15. Cui, Lirong & Li, Haijun, 2007. "Analytical method for reliability and MTTF assessment of coherent systems with dependent components," Reliability Engineering and System Safety, Elsevier, vol. 92(3), pages 300-307.
    16. Haijun Li & Susan H. Xu, 2001. "Directionally Convex Comparison of Correlated First Passage Times," Methodology and Computing in Applied Probability, Springer, vol. 3(4), pages 365-378, December.
    17. Eisele, Karl-Theodor, 2008. "Recursions for multivariate compound phase variables," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 65-72, February.
    18. Eric C. K. Cheung & Oscar Peralta & Jae-Kyung Woo, 2021. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Papers 2201.11122, arXiv.org.
    19. Ivanovs, Jevgenijs & Boxma, Onno, 2015. "A bivariate risk model with mutual deficit coverage," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 126-134.
    20. Hobolth, Asger & Rivas-González, Iker & Bladt, Mogens & Futschik, Andreas, 2024. "Phase-type distributions in mathematical population genetics: An emerging framework," Theoretical Population Biology, Elsevier, vol. 157(C), pages 14-32.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:18:y:2016:i:1:d:10.1007_s11009-014-9420-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.