IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v48y2021i4p1344-1383.html
   My bibliography  Save this article

Parametric versus nonparametric: The fitness coefficient

Author

Listed:
  • Gildas Mazo
  • François Portier

Abstract

Olkin and Spiegelman introduced a semiparametric estimator of the density defined as a mixture between the maximum likelihood estimator and the kernel density estimator. Due to the absence of any leave‐one‐out strategy and the hardness of estimating the Kullback–Leibler loss of kernel density estimate, their approach produces unsatisfactory results. This article investigates an alternative approach in which only the kernel density estimate is modified. From a theoretical perspective, the estimated mixture parameter is shown to converge in probability to one if the parametric model is true and to zero otherwise. From a practical perspective, the utility of the approach is illustrated on real and simulated data sets.

Suggested Citation

  • Gildas Mazo & François Portier, 2021. "Parametric versus nonparametric: The fitness coefficient," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(4), pages 1344-1383, December.
  • Handle: RePEc:bla:scjsta:v:48:y:2021:i:4:p:1344-1383
    DOI: 10.1111/sjos.12495
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12495
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12495?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Portier, François & Segers, Johan, 2018. "On the weak convergence of the empirical conditional copula under a simplifying assumption," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 160-181.
    2. Portier, Francois & Segers, Johan, 2018. "On the weak convergence of the empirical conditional copula under a simplifying assumption," LIDAM Reprints ISBA 2018012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Faraway, Julian, 1990. "Implementing semiparametric density estimation," Statistics & Probability Letters, Elsevier, vol. 10(2), pages 141-143, July.
    4. Claeskens,Gerda & Hjort,Nils Lid, 2008. "Model Selection and Model Averaging," Cambridge Books, Cambridge University Press, number 9780521852258, October.
    5. Stephen S. M. Lee & Mehdi Soleymani, 2015. "A Simple Formula for Mixing Estimators With Different Convergence Rates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1463-1478, December.
    6. Nagler, Thomas & Czado, Claudia, 2016. "Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 69-89.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonas Meier, 2020. "Multivariate Distribution Regression," Diskussionsschriften dp2023, Universitaet Bern, Departement Volkswirtschaft.
    2. Neumeyer, Natalie & Omelka, Marek & Hudecová, Šárka, 2019. "A copula approach for dependence modeling in multivariate nonparametric time series," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 139-162.
    3. Bianchi, Pascal & Elgui, Kevin & Portier, François, 2023. "Conditional independence testing via weighted partial copulas," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    4. Lopez, Olivier, 2019. "A censored copula model for micro-level claim reserving," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 1-14.
    5. Côté, Marie-Pier & Genest, Christian & Omelka, Marek, 2019. "Rank-based inference tools for copula regression, with property and casualty insurance applications," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 1-15.
    6. Marek Omelka & Šárka Hudecová & Natalie Neumeyer, 2021. "Maximum pseudo‐likelihood estimation based on estimated residuals in copula semiparametric models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(4), pages 1433-1473, December.
    7. Kitagawa, Toru & Muris, Chris, 2016. "Model averaging in semiparametric estimation of treatment effects," Journal of Econometrics, Elsevier, vol. 193(1), pages 271-289.
    8. Jeffrey S. Racine & Qi Li & Dalei Yu & Li Zheng, 2023. "Optimal Model Averaging of Mixed-Data Kernel-Weighted Spline Regressions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1251-1261, October.
    9. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    10. Davide Fiaschi & Andrea Mario Lavezzi & Angela Parenti, 2020. "Deep and Proximate Determinants of the World Income Distribution," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 66(3), pages 677-710, September.
    11. Fabio Canova & Christian Matthes, 2021. "Dealing with misspecification in structural macroeconometric models," Quantitative Economics, Econometric Society, vol. 12(2), pages 313-350, May.
    12. Yu, Jun & Meng, Xiran & Wang, Yaping, 2023. "Optimal designs for semi-parametric dose-response models under random contamination," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    13. Zhongqi Liang & Qihua Wang & Yuting Wei, 2022. "Robust model selection with covariables missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(3), pages 539-557, June.
    14. HAEDO, Christian & MOUCHART , Michel & ,, 2013. "Specialized agglomerations with areal data: model and detection," LIDAM Discussion Papers CORE 2013060, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    15. Han, Qinkai & Wang, Tianyang & Chu, Fulei, 2022. "Nonparametric copula modeling of wind speed-wind shear for the assessment of height-dependent wind energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    16. Bhattacharya, Debopam & Dupas, Pascaline, 2012. "Inferring welfare maximizing treatment assignment under budget constraints," Journal of Econometrics, Elsevier, vol. 167(1), pages 168-196.
    17. Schomaker Michael & Heumann Christian, 2011. "Model Averaging in Factor Analysis: An Analysis of Olympic Decathlon Data," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 7(1), pages 1-15, January.
    18. Dirick, Lore & Claeskens, Gerda & Vasnev, Andrey & Baesens, Bart, 2022. "A hierarchical mixture cure model with unobserved heterogeneity for credit risk," Econometrics and Statistics, Elsevier, vol. 22(C), pages 39-55.
    19. Tumala, Mohammed M & Olubusoye, Olusanya E & Yaaba, Baba N & Yaya, OlaOluwa S & Akanbi, Olawale B, 2017. "Forecasting Nigerian Inflation using Model Averaging methods: Modelling Frameworks to Central Banks," MPRA Paper 88754, University Library of Munich, Germany, revised Feb 2018.
    20. José Manuel Cordero Ferrera & Manuel Muñiz Pérez & Rosa Simancas Rodríguez, 2015. "The influence of socioeconomic factors on cognitive and non-cognitive educational outcomes," Investigaciones de Economía de la Educación volume 10, in: Marta Rahona López & Jennifer Graves (ed.), Investigaciones de Economía de la Educación 10, edition 1, volume 10, chapter 21, pages 413-438, Asociación de Economía de la Educación.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:48:y:2021:i:4:p:1344-1383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.