IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v41y2014i4p1013-1030.html
   My bibliography  Save this article

Computing Critical Values of Exact Tests by Incorporating Monte Carlo Simulations Combined with Statistical Tables

Author

Listed:
  • Albert Vexler
  • Young Min Kim
  • Jihnhee Yu
  • Nicole A. Lazar
  • Alan D. Hutson

Abstract

type="main" xml:id="sjos12079-abs-0001"> Various exact tests for statistical inference are available for powerful and accurate decision rules provided that corresponding critical values are tabulated or evaluated via Monte Carlo methods. This article introduces a novel hybrid method for computing p-values of exact tests by combining Monte Carlo simulations and statistical tables generated a priori. To use the data from Monte Carlo generations and tabulated critical values jointly, we employ kernel density estimation within Bayesian-type procedures. The p-values are linked to the posterior means of quantiles. In this framework, we present relevant information from the Monte Carlo experiments via likelihood-type functions, whereas tabulated critical values are used to reflect prior distributions. The local maximum likelihood technique is employed to compute functional forms of prior distributions from statistical tables. Empirical likelihood functions are proposed to replace parametric likelihood functions within the structure of the posterior mean calculations to provide a Bayesian-type procedure with a distribution-free set of assumptions. We derive the asymptotic properties of the proposed nonparametric posterior means of quantiles process. Using the theoretical propositions, we calculate the minimum number of needed Monte Carlo resamples for desired level of accuracy on the basis of distances between actual data characteristics (e.g. sample sizes) and characteristics of data used to present corresponding critical values in a table. The proposed approach makes practical applications of exact tests simple and rapid. Implementations of the proposed technique are easily carried out via the recently developed STATA and R statistical packages.

Suggested Citation

  • Albert Vexler & Young Min Kim & Jihnhee Yu & Nicole A. Lazar & Alan D. Hutson, 2014. "Computing Critical Values of Exact Tests by Incorporating Monte Carlo Simulations Combined with Statistical Tables," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 1013-1030, December.
  • Handle: RePEc:bla:scjsta:v:41:y:2014:i:4:p:1013-1030
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/sjos.12079
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang Zhou & Bing-Yi Jing, 2003. "Adjusted empirical likelihood method for quantiles," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(4), pages 689-703, December.
    2. Paul R. Rosenbaum, 2005. "An exact distribution‐free test comparing two multivariate distributions based on adjacency," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(4), pages 515-530, September.
    3. Jihnhee Yu & Albert Vexler & Lili Tian, 2010. "Analyzing Incomplete Data Subject to a Threshold using Empirical Likelihood Methods: An Application to a Pneumonia Risk Study in an ICU Setting," Biometrics, The International Biometric Society, vol. 66(1), pages 123-130, March.
    4. Nicole A. Lazar, 2003. "Bayesian empirical likelihood," Biometrika, Biometrika Trust, vol. 90(2), pages 319-326, June.
    5. Vexler, Albert & Gurevich, Gregory, 2010. "Empirical likelihood ratios applied to goodness-of-fit tests based on sample entropy," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 531-545, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hadi Alizadeh Noughabi & Albert Vexler, 2016. "An efficient correction to the density-based empirical likelihood ratio goodness-of-fit test for the inverse Gaussian distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(16), pages 2988-3003, December.
    2. Hadi Alizadeh Noughabi, 2015. "Empirical likelihood ratio-based goodness-of-fit test for the logistic distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(9), pages 1973-1983, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vexler, Albert & Zou, Li & Hutson, Alan D., 2019. "The empirical likelihood prior applied to bias reduction of general estimating equations," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 96-106.
    2. Albert Vexler & Wan-Min Tsai & Alan D. Hutson, 2014. "A Simple Density-Based Empirical Likelihood Ratio Test for Independence," The American Statistician, Taylor & Francis Journals, vol. 68(3), pages 158-169, February.
    3. Reza Modarres, 2024. "Hotelling $$T^2$$ T 2 test in high dimensions with application to Wilks outlier method," Statistical Papers, Springer, vol. 65(8), pages 5203-5218, October.
    4. Luo, Yu & Graham, Daniel J. & McCoy, Emma J., 2023. "Semiparametric Bayesian doubly robust causal estimation," LSE Research Online Documents on Economics 117944, London School of Economics and Political Science, LSE Library.
    5. Kai Yang & Xue Ding & Xiaohui Yuan, 2022. "Bayesian empirical likelihood inference and order shrinkage for autoregressive models," Statistical Papers, Springer, vol. 63(1), pages 97-121, February.
    6. Sanjay Chaudhuri & Debashis Mondal & Teng Yin, 2017. "Hamiltonian Monte Carlo sampling in Bayesian empirical likelihood computation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 293-320, January.
    7. Asok K. Nanda & Shovan Chowdhury, 2021. "Shannon's Entropy and Its Generalisations Towards Statistical Inference in Last Seven Decades," International Statistical Review, International Statistical Institute, vol. 89(1), pages 167-185, April.
    8. Jaeger, Adam & Lazar, Nicole A., 2020. "Split sample empirical likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    9. Han-Ying Liang & Jacobo Uña-Álvarez, 2012. "Empirical likelihood for conditional quantile with left-truncated and dependent data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(4), pages 765-790, August.
    10. Yang, Hanfang & Zhao, Yichuan, 2018. "Smoothed jackknife empirical likelihood for the one-sample difference of quantiles," Computational Statistics & Data Analysis, Elsevier, vol. 120(C), pages 58-69.
    11. Jean-Pierre Florens & Anna Simoni, 2021. "Gaussian Processes and Bayesian Moment Estimation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 482-492, March.
    12. Zhichao Liu & Catherine Forbes & Heather Anderson, 2017. "Robust Bayesian exponentially tilted empirical likelihood method," Monash Econometrics and Business Statistics Working Papers 21/17, Monash University, Department of Econometrics and Business Statistics.
    13. Nicolas Städler & Sach Mukherjee, 2017. "Two-sample testing in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 225-246, January.
    14. Qiu, Tao & Zhang, Qintong & Fang, Yuanyuan & Xu, Wangli, 2024. "Testing homogeneity in high dimensional data through random projections," Journal of Multivariate Analysis, Elsevier, vol. 200(C).
    15. Mike G. Tsionas, 2023. "Linex and double-linex regression for parameter estimation and forecasting," Annals of Operations Research, Springer, vol. 323(1), pages 229-245, April.
    16. Siddhartha Chib & Minchul Shin & Anna Simoni, 2022. "Bayesian estimation and comparison of conditional moment models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 740-764, July.
    17. Biswas, Munmun & Ghosh, Anil K., 2014. "A nonparametric two-sample test applicable to high dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 160-171.
    18. Pavia, Jose M., 2015. "Testing Goodness-of-Fit with the Kernel Density Estimator: GoFKernel," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 66(c01).
    19. Stefano Bonnini & Getnet Melak Assegie & Kamila Trzcinska, 2024. "Review about the Permutation Approach in Hypothesis Testing," Mathematics, MDPI, vol. 12(17), pages 1-29, August.
    20. Modarres, Reza, 2014. "On the interpoint distances of Bernoulli vectors," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 215-222.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:41:y:2014:i:4:p:1013-1030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.