IDEAS home Printed from https://ideas.repec.org/a/bla/revpol/v40y2023i1p153-175.html
   My bibliography  Save this article

Policy beliefs, policy learning, and risk perception: Exploring the formation of local creative Placemaking‐catalyzed policy network

Author

Listed:
  • Wen Guo

Abstract

This article studies the formation of a local Creative Placemaking (CPM) policy network based on the Advocacy Coalition Framework (ACF) and social capital perspective of policy networks. This article hypothesizes that policy beliefs, policy learning, social capital, and the perceived risks induced by defections, as well as macro‐level changes in the broader political and socio‐economic system, influence partner selection in the local CPM policy networks. The study collected survey data from policy actors participating in the Franklinton CPM‐catalyzed revitalization project in Columbus, Ohio. An exponential random graph model (ERGM) was applied to test the hypotheses. The findings partially support the hypotheses: policy learning, certain secondary policy beliefs, and risk perceptions of changes in economic and political factors are correlated with tie formation. The reciprocity‐driven bonding structure underlies the Franklinton CPM policy network, suggesting that policy actors perceive the Franklinton CPM policy network as a high‐defection‐risk network. This study has implications for policy makers in designing engagement strategies to better involve stakeholders holding different beliefs and occupying different network positions. Este artículo estudia la formación de una red local de políticas de Creative Placemaking (CPM) basada en el Marco de Coalición de Defensa (ACF) y la perspectiva del capital social de las redes de políticas. Este artículo plantea la hipótesis de que las creencias políticas, el aprendizaje de políticas, el capital social y los riesgos percibidos inducidos por las deserciones, así como los cambios a nivel macro en el sistema político y socioeconómico más amplio, influyen en la selección de socios en las redes políticas locales de CPM. El estudio recopiló datos de encuestas de actores políticos que participaron en el proyecto de revitalización catalizada por CPM de Franklinton en Columbus, Ohio. Se aplicó un modelo gráfico aleatorio exponencial (ERGM) para probar las hipótesis. Los hallazgos respaldan parcialmente las hipótesis: el aprendizaje de políticas, ciertas creencias políticas secundarias y las percepciones de riesgo de los cambios en los factores económicos y políticos están correlacionados con la formación de vínculos. La estructura de vinculación impulsada por la reciprocidad subyace en la red de políticas de CPM de Franklinton, lo que sugiere que los actores políticos perciben la red de políticas de CPM de Franklinton como una red de alto riesgo de deserción. Este estudio tiene implicaciones para los formuladores de políticas en el diseño de estrategias de participación para involucrar mejor a las partes interesadas que tienen diferentes creencias y ocupan diferentes posiciones en la red. 本文基于倡导联盟框架(ACF)和政策网络的社会资本视角,研究了一个地方创意场所营造(CPM)政策网络的形成。本文假设,政策信念、政策学习、社会资本、由背叛引起的感知风险、以及更广泛的政治和社会经济体系中的宏观变化,会影响地方CPM政策网络中的合作伙伴选择。本研究从一系列政策行动者处收集了调查数据,这些政策行动者参与了俄亥俄州哥伦布市富兰克林顿地区由CPM驱动的振兴计划。应用指数随机图模型(ERGM)检验假设。研究结果部分支持了假设:政策学习、部分次要政策信念、以及对经济和政治因素变化的风险感知,与合作关系的形成相关。由互惠性驱动的关系结构是富兰克林顿地区CPM政策网络的基础,这表明政策行动者将富兰克林顿地区的CPM政策网络视为一个高背叛风险网络。本研究对“决策者设计参与策略以更好地让持有不同信念和占据不同网络位置的利益攸关方参与其中”一事具有启示。

Suggested Citation

  • Wen Guo, 2023. "Policy beliefs, policy learning, and risk perception: Exploring the formation of local creative Placemaking‐catalyzed policy network," Review of Policy Research, Policy Studies Organization, vol. 40(1), pages 153-175, January.
  • Handle: RePEc:bla:revpol:v:40:y:2023:i:1:p:153-175
    DOI: 10.1111/ropr.12508
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/ropr.12508
    Download Restriction: no

    File URL: https://libkey.io/10.1111/ropr.12508?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sotirov, Metodi & Memmler, Michael, 2012. "The Advocacy Coalition Framework in natural resource policy studies — Recent experiences and further prospects," Forest Policy and Economics, Elsevier, vol. 16(C), pages 51-64.
    2. Hunter, David R. & Goodreau, Steven M. & Handcock, Mark S., 2008. "Goodness of Fit of Social Network Models," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 248-258, March.
    3. Stephen P. Borgatti & Rob Cross, 2003. "A Relational View of Information Seeking and Learning in Social Networks," Management Science, INFORMS, vol. 49(4), pages 432-445, April.
    4. Cranmer, Skyler J. & Desmarais, Bruce A., 2011. "Inferential Network Analysis with Exponential Random Graph Models," Political Analysis, Cambridge University Press, vol. 19(1), pages 66-86, January.
    5. Eleonora Redaelli, 2016. "Creative placemaking and the NEA: unpacking a multi-level governance," Policy Studies, Taylor & Francis Journals, vol. 37(4), pages 387-402, July.
    6. Ann Markusen & Anne Gadwa Nicodemus, 2014. "Creative placemaking: how to do it well," Community Development Innovation Review, Federal Reserve Bank of San Francisco, issue 02, pages 035-042.
    7. Jenkins-Smith, Hank C. & Sabatier, Paul A., 1994. "Evaluating the Advocacy Coalition Framework," Journal of Public Policy, Cambridge University Press, vol. 14(2), pages 175-203, April.
    8. Matthew L. Hamilton & Mark Lubell, 2019. "Climate change adaptation, social capital, and the performance of polycentric governance institutions," Climatic Change, Springer, vol. 152(3), pages 307-326, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cornelius Fritz & Michael Lebacher & Göran Kauermann, 2020. "Tempus volat, hora fugit: A survey of tie‐oriented dynamic network models in discrete and continuous time," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(3), pages 275-299, August.
    2. Brennecke, Julia & Rank, Olaf, 2017. "The firm’s knowledge network and the transfer of advice among corporate inventors—A multilevel network study," Research Policy, Elsevier, vol. 46(4), pages 768-783.
    3. Adam Wellstead, 2017. "Plus ça Change, Plus C’est La Même Chose? A review of Paul Sabatier’s “An advocacy coalition framework of policy change and the role of policy-oriented learning therein”," Policy Sciences, Springer;Society of Policy Sciences, vol. 50(4), pages 549-561, December.
    4. Lee, Jihui & Li, Gen & Wilson, James D., 2020. "Varying-coefficient models for dynamic networks," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    5. Farhan, Farwiza & Hoebink, Paul, 2019. "Can campaigns save forests? Critical reflections from the Tripa campaign, Aceh, Indonesia," Forest Policy and Economics, Elsevier, vol. 105(C), pages 17-27.
    6. Tom Broekel & Pierre-Alexandre Balland & Martijn Burger & Frank Oort, 2014. "Modeling knowledge networks in economic geography: a discussion of four methods," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 53(2), pages 423-452, September.
    7. Ashish Arora & Michelle Gittelman & Sarah Kaplan & John Lynch & Will Mitchell & Nicolaj Siggelkow & Ji Youn (Rose) Kim & Michael Howard & Emily Cox Pahnke & Warren Boeker, 2016. "Understanding network formation in strategy research: Exponential random graph models," Strategic Management Journal, Wiley Blackwell, vol. 37(1), pages 22-44, January.
    8. Alessandro Lomi & Dean Lusher & Philippa E. Pattison & Garry Robins, 2014. "The Focused Organization of Advice Relations: A Study in Boundary Crossing," Organization Science, INFORMS, vol. 25(2), pages 438-457, April.
    9. Gallemore, Caleb & Di Gregorio, Monica & Moeliono, Moira & Brockhaus, Maria & Prasti H., Rut Dini, 2015. "Transaction costs, power, and multi-level forest governance in Indonesia," Ecological Economics, Elsevier, vol. 114(C), pages 168-179.
    10. Brennecke, Julia & Sofka, Wolfgang & Wang, Peng & Rank, Olaf N., 2021. "How the organizational design of R&D units affects individual search intensity – A network study," Research Policy, Elsevier, vol. 50(5).
    11. Dean Neu & Gregory D. Saxton & Abu S. Rahaman, 2022. "Social Accountability, Ethics, and the Occupy Wall Street Protests," Journal of Business Ethics, Springer, vol. 180(1), pages 17-31, September.
    12. repec:hal:journl:hal-04689665 is not listed on IDEAS
    13. Sándor Juhász, 2021. "Spinoffs and tie formation in cluster knowledge networks," Small Business Economics, Springer, vol. 56(4), pages 1385-1404, April.
    14. Amol M. Joshi & Todd M. Inouye & Jeffrey A. Robinson, 2018. "How does agency workforce diversity influence Federal R&D funding of minority and women technology entrepreneurs? An analysis of the SBIR and STTR programs, 2001–2011," Small Business Economics, Springer, vol. 50(3), pages 499-519, March.
    15. Darko Cherepnalkoski & Andreas Karpf & Igor Mozetič & Miha Grčar, 2016. "Cohesion and Coalition Formation in the European Parliament: Roll-Call Votes and Twitter Activities," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-27, November.
    16. Starling David Hunter & Henrik Bentzen & Jan Taug, 2020. "On the “missing link” between formal organization and informal social structure," Journal of Organization Design, Springer;Organizational Design Community, vol. 9(1), pages 1-20, December.
    17. Vesa Peltokorpi & Fabian Jintae Froese & B. Sebastian Reiche & Sebastian Klar, 2022. "Reverse Knowledge Flows: How and When Do Preparation and Reintegration Facilitate Repatriate Knowledge Transfer?," Journal of Management Studies, Wiley Blackwell, vol. 59(7), pages 1869-1893, November.
    18. Mockshell, Jonathan & Birner, Regina, 2021. "Agricultural Policy Processes: Influential Actors, Policy Networks and Competing Narratives," 2021 Conference, August 17-31, 2021, Virtual 315323, International Association of Agricultural Economists.
    19. Kayvan Sadeghi & Alessandro Rinaldo, 2020. "Hierarchical models for independence structures of networks," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(3), pages 439-457, August.
    20. Fabra-Crespo, M. & Rojas-Briales, E., 2015. "Comparative analysis on the communication strategies of the forest owners' associations in Europe," Forest Policy and Economics, Elsevier, vol. 50(C), pages 20-30.
    21. Jens Nilsson & Annica Sandström & Daniel Nohrstedt, 2020. "Beliefs, social identity, and the view of opponents in Swedish carnivore management policy," Policy Sciences, Springer;Society of Policy Sciences, vol. 53(3), pages 453-472, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:revpol:v:40:y:2023:i:1:p:153-175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/ipsonea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.