IDEAS home Printed from https://ideas.repec.org/a/bla/popmgt/v32y2023i12p4114-4134.html
   My bibliography  Save this article

Fair and efficient vaccine allocation: A generalized Gini index approach

Author

Listed:
  • Walter J. Gutjahr

Abstract

The paper proposes an optimization model for the allocation of vaccines to a heterogeneous population composed of several subpopulations with different sizes and epidemiological disease transmission parameters. As the objective, an aggregated function combining a standard utilitarian efficiency criterion with a Gini index–related penalty term is considered. Contrary to previous work, we adopt an outcome equity view: The inequity measure is not based on vaccination fractions or other input factors, but on the fractions of individuals escaping infection, as predicted by an susceptible‐infectious‐removed (SIR) model. An adjusted pro rata (APR) policy of vaccine allocation minimizing inequity in this outcome view is introduced, and a numerical procedure for its determination is presented. The concepts are developed both for the case of segregated subpopulations and for that of interactions between the subpopulations. Interestingly, in a large number of instances, the optimal solution under the aggregated objective function turns out to be identical to APR. Whether APR is locally or even globally optimal in a concrete case depends on the relation of an inequity aversion parameter to certain threshold values. While the local optimality threshold can be determined by linear programming, the determination of the global optimality threshold, as the vaccine allocation problem itself, is a problem of nonconvex optimization. We suggest an exact optimization approach for smaller instances, and propose algorithms building on particle swarm optimization for threshold determination and allocation optimization at larger instances. Extensions to alternative outcome measures such as the number of fatalities are presented as well. In addition to the investigation of randomly generated instances, two test cases from the literature are revisited in the context of the present work. Moreover, a new case study based on data from the COVID‐19 outbreak in Austria in 2020 is introduced and analyzed.

Suggested Citation

  • Walter J. Gutjahr, 2023. "Fair and efficient vaccine allocation: A generalized Gini index approach," Production and Operations Management, Production and Operations Management Society, vol. 32(12), pages 4114-4134, December.
  • Handle: RePEc:bla:popmgt:v:32:y:2023:i:12:p:4114-4134
    DOI: 10.1111/poms.14080
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/poms.14080
    Download Restriction: no

    File URL: https://libkey.io/10.1111/poms.14080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Karsu, Özlem & Morton, Alec, 2015. "Inequity averse optimization in operational research," European Journal of Operational Research, Elsevier, vol. 245(2), pages 343-359.
    2. Mahdi Mostajabdaveh & Walter J. Gutjahr & F. Sibel Salman, 2019. "Inequity-averse shelter location for disaster preparedness," IISE Transactions, Taylor & Francis Journals, vol. 51(8), pages 809-829, August.
    3. Ohad Eisenhandler & Michal Tzur, 2019. "The Humanitarian Pickup and Distribution Problem," Operations Research, INFORMS, vol. 67(1), pages 10-32, January.
    4. Gutjahr, Walter J. & Fischer, Sophie, 2018. "Equity and deprivation costs in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 270(1), pages 185-197.
    5. Kostreva, Michael M. & Ogryczak, Wlodzimierz & Wierzbicki, Adam, 2004. "Equitable aggregations and multiple criteria analysis," European Journal of Operational Research, Elsevier, vol. 158(2), pages 362-377, October.
    6. Porath Elchanan Ben & Gilboa Itzhak, 1994. "Linear Measures, the Gini Index, and The Income-Equality Trade-off," Journal of Economic Theory, Elsevier, vol. 64(2), pages 443-467, December.
    7. Lotty E. Westerink‐Duijzer & Loe P. J. Schlicher & Marieke Musegaas, 2020. "Core Allocations for Cooperation Problems in Vaccination," Production and Operations Management, Production and Operations Management Society, vol. 29(7), pages 1720-1737, July.
    8. Ben-Porath, Elchanan & Gilboa, Itzhak & Schmeidler, David, 1997. "On the Measurement of Inequality under Uncertainty," Journal of Economic Theory, Elsevier, vol. 75(1), pages 194-204, July.
    9. Argyris, Nikolaos & Karsu, Özlem & Yavuz, Mirel, 2022. "Fair resource allocation: Using welfare-based dominance constraints," European Journal of Operational Research, Elsevier, vol. 297(2), pages 560-578.
    10. Weymark, John A., 1981. "Generalized gini inequality indices," Mathematical Social Sciences, Elsevier, vol. 1(4), pages 409-430, August.
    11. Westerink-Duijzer, L.E. & van Jaarsveld, W.L. & Wallinga, J. & Dekker, R., 2016. "The most efficient critical vaccination coverage and its equivalence with maximizing the herd effect," Econometric Institute Research Papers EI2016-06, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    12. Filippi, C. & Guastaroba, G. & Speranza, M.G., 2021. "On single-source capacitated facility location with cost and fairness objectives," European Journal of Operational Research, Elsevier, vol. 289(3), pages 959-974.
    13. Dimitris Bertsimas & Vivek F. Farias & Nikolaos Trichakis, 2011. "The Price of Fairness," Operations Research, INFORMS, vol. 59(1), pages 17-31, February.
    14. Ohad Eisenhandler & Michal Tzur, 2019. "A Segment-Based Formulation and a Matheuristic for the Humanitarian Pickup and Distribution Problem," Transportation Science, INFORMS, vol. 53(5), pages 1389-1408, September.
    15. Enayati, Shakiba & Özaltın, Osman Y., 2020. "Optimal influenza vaccine distribution with equity," European Journal of Operational Research, Elsevier, vol. 283(2), pages 714-725.
    16. Gutjahr, Walter J., 2021. "Inequity-averse stochastic decision processes," European Journal of Operational Research, Elsevier, vol. 288(1), pages 258-270.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gutjahr, Walter J., 2021. "Inequity-averse stochastic decision processes," European Journal of Operational Research, Elsevier, vol. 288(1), pages 258-270.
    2. Argyris, Nikolaos & Karsu, Özlem & Yavuz, Mirel, 2022. "Fair resource allocation: Using welfare-based dominance constraints," European Journal of Operational Research, Elsevier, vol. 297(2), pages 560-578.
    3. Alem, Douglas & Caunhye, Aakil M. & Moreno, Alfredo, 2022. "Revisiting Gini for equitable humanitarian logistics," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    4. Sarid, Adi S. & Glynn, Peter W. & Tzur, Michal, 2024. "Power distribution in developing countries — Planning for effectiveness and equity," Omega, Elsevier, vol. 123(C).
    5. Gutjahr, Walter J. & Fischer, Sophie, 2018. "Equity and deprivation costs in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 270(1), pages 185-197.
    6. Chen, Violet Xinying & Hooker, J.N., 2022. "Combining leximax fairness and efficiency in a mathematical programming model," European Journal of Operational Research, Elsevier, vol. 299(1), pages 235-248.
    7. Spencer Leitch & Zhiyuan Wei, 2024. "Improving spatial access to healthcare facilities: an integrated approach with spatial analysis and optimization modeling," Annals of Operations Research, Springer, vol. 341(2), pages 1057-1074, October.
    8. Francesco Andreoli & Claudio Zoli, 2020. "From unidimensional to multidimensional inequality: a review," METRON, Springer;Sapienza Università di Roma, vol. 78(1), pages 5-42, April.
    9. Dukkanci, Okan & Karsu, Özlem & Kara, Bahar Y., 2022. "Planning sustainable routes: Economic, environmental and welfare concerns," European Journal of Operational Research, Elsevier, vol. 301(1), pages 110-123.
    10. Qu, Xiangyu, 2022. "On the measurement of opportunity-dependent inequality under uncertainty," Journal of Mathematical Economics, Elsevier, vol. 101(C).
    11. Chew, Soo Hong & Sagi, Jacob S., 2012. "An inequality measure for stochastic allocations," Journal of Economic Theory, Elsevier, vol. 147(4), pages 1517-1544.
    12. Violet Xinying Chen & J. N. Hooker, 2023. "A guide to formulating fairness in an optimization model," Annals of Operations Research, Springer, vol. 326(1), pages 581-619, July.
    13. Breugem, Thomas & Van Wassenhove, Luk N., 2022. "The price of imposing vertical equity through asymmetric outcome constraints," Other publications TiSEM b6e85652-c54a-4597-a32e-d, Tilburg University, School of Economics and Management.
    14. Li, Siping & Zhou, Yaoming, 2024. "Integrating equity and efficiency into urban logistics resilience under emergency lockdowns," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    15. Yoon Ha Lee & Ji Soo Lee & Seung Chan Baek & Won Hwa Hong, 2020. "Spatial Equity with Census Population Data vs. Floating Population Data: The Distribution of Earthquake Evacuation Shelters in Daegu, South Korea," Sustainability, MDPI, vol. 12(19), pages 1-17, September.
    16. Thomas Breugem & Luk N. Van Wassenhove, 2022. "The Price of Imposing Vertical Equity Through Asymmetric Outcome Constraints," Management Science, INFORMS, vol. 68(11), pages 7977-7993, November.
    17. Bouyssou, Denis & Pirlot, Marc, 2005. "Following the traces:: An introduction to conjoint measurement without transitivity and additivity," European Journal of Operational Research, Elsevier, vol. 163(2), pages 287-337, June.
    18. Akoluk, Damla & Karsu, Özlem, 2022. "Ensuring multidimensional equality in public service," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    19. Jon M. Stauffer & Manoj Vanajakumari & Subodha Kumar & Theresa Mangapora, 2022. "Achieving equitable food security: How can food bank mobile pantries fill this humanitarian need," Production and Operations Management, Production and Operations Management Society, vol. 31(4), pages 1802-1821, April.
    20. Mohammadmehdi Hakimifar & Vera C. Hemmelmayr & Fabien Tricoire, 2023. "A lexicographic maximin approach to the selective assessment routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 205-249, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:popmgt:v:32:y:2023:i:12:p:4114-4134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1937-5956 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.