IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v114y2018icp398-415.html
   My bibliography  Save this article

Social media data analytics to improve supply chain management in food industries

Author

Listed:
  • Singh, Akshit
  • Shukla, Nagesh
  • Mishra, Nishikant

Abstract

This paper proposes a big-data analytics-based approach that considers social media (Twitter) data for the identification of supply chain management issues in food industries. In particular, the proposed approach includes text analysis using a support vector machine (SVM) and hierarchical clustering with multiscale bootstrap resampling. The result of this approach included a cluster of words which could inform supply-chain (SC) decision makers about customer feedback and issues in the flow/quality of food products. A case study in the beef supply chain was analysed using the proposed approach, where three weeks of data from Twitter were used.

Suggested Citation

  • Singh, Akshit & Shukla, Nagesh & Mishra, Nishikant, 2018. "Social media data analytics to improve supply chain management in food industries," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 398-415.
  • Handle: RePEc:eee:transe:v:114:y:2018:i:c:p:398-415
    DOI: 10.1016/j.tre.2017.05.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554516303817
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2017.05.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tan, Kim Hua & Zhan, YuanZhu & Ji, Guojun & Ye, Fei & Chang, Chingter, 2015. "Harvesting big data to enhance supply chain innovation capabilities: An analytic infrastructure based on deduction graph," International Journal of Production Economics, Elsevier, vol. 165(C), pages 223-233.
    2. Mena, Carlos & Terry, Leon A. & Williams, Adrian & Ellram, Lisa, 2014. "Causes of waste across multi-tier supply networks: Cases in the UK food sector," International Journal of Production Economics, Elsevier, vol. 152(C), pages 144-158.
    3. Hazen, Benjamin T. & Boone, Christopher A. & Ezell, Jeremy D. & Jones-Farmer, L. Allison, 2014. "Data quality for data science, predictive analytics, and big data in supply chain management: An introduction to the problem and suggestions for research and applications," International Journal of Production Economics, Elsevier, vol. 154(C), pages 72-80.
    4. Suryakant, & Tyagi, Satish, 2015. "Optimization of a platform configuration with generational changes," International Journal of Production Economics, Elsevier, vol. 169(C), pages 299-309.
    5. Cox, Andrew & Chicksand, Dan, 2005. "The Limits of Lean Management Thinking:: Multiple Retailers and Food and Farming Supply Chains," European Management Journal, Elsevier, vol. 23(6), pages 648-662, December.
    6. Fionn Murtagh & Pierre Legendre, 2014. "Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion?," Journal of Classification, Springer;The Classification Society, vol. 31(3), pages 274-295, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nishikant Mishra & Akshit Singh, 2018. "Use of twitter data for waste minimisation in beef supply chain," Annals of Operations Research, Springer, vol. 270(1), pages 337-359, November.
    2. Lidong Wang & Cheryl Ann Alexander, 2015. "Big Data Driven Supply Chain Management and Business Administration," American Journal of Economics and Business Administration, Science Publications, vol. 7(2), pages 60-67, June.
    3. Ray Qing Cao & Dara G. Schniederjans & Vicky Ching Gu, 2021. "Stakeholder sentiment in service supply chains: big data meets agenda-setting theory," Service Business, Springer;Pan-Pacific Business Association, vol. 15(1), pages 151-175, March.
    4. Akhtar, Pervaiz & Khan, Zaheer & Tarba, Shlomo & Jayawickrama, Uchitha, 2018. "The Internet of Things, dynamic data and information processing capabilities, and operational agility," Technological Forecasting and Social Change, Elsevier, vol. 136(C), pages 307-316.
    5. Pan Liu & Shu-ping Yi, 2018. "Investment decision-making and coordination of a three-stage supply chain considering Data Company in the Big Data era," Annals of Operations Research, Springer, vol. 270(1), pages 255-271, November.
    6. Roßmann, Bernhard & Canzaniello, Angelo & von der Gracht, Heiko & Hartmann, Evi, 2018. "The future and social impact of Big Data Analytics in Supply Chain Management: Results from a Delphi study," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 135-149.
    7. Purva Grover & Arpan Kumar Kar, 2017. "Big Data Analytics: A Review on Theoretical Contributions and Tools Used in Literature," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 18(3), pages 203-229, September.
    8. Yaping Zhao & Zelong Yi, 2021. "Pricing of a Three-Stage Supply Chain with a Big Data Company," SN Operations Research Forum, Springer, vol. 2(4), pages 1-19, December.
    9. Shuihua Han & Yufang Fu & Bin Cao & Zongwei Luo, 2018. "Pricing and bargaining strategy of e-retail under hybrid operational patterns," Annals of Operations Research, Springer, vol. 270(1), pages 179-200, November.
    10. Ionica Oncioiu & Ovidiu Constantin Bunget & Mirela Cătălina Türkeș & Sorinel Căpușneanu & Dan Ioan Topor & Attila Szora Tamaș & Ileana-Sorina Rakoș & Mihaela Ștefan Hint, 2019. "The Impact of Big Data Analytics on Company Performance in Supply Chain Management," Sustainability, MDPI, vol. 11(18), pages 1-22, September.
    11. Yu, Wantao & Chavez, Roberto & Jacobs, Mark A. & Feng, Mengying, 2018. "Data-driven supply chain capabilities and performance: A resource-based view," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 371-385.
    12. Raut, Rakesh D. & Mangla, Sachin Kumar & Narwane, Vaibhav S. & Dora, Manoj & Liu, Mengqi, 2021. "Big Data Analytics as a mediator in Lean, Agile, Resilient, and Green (LARG) practices effects on sustainable supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    13. Venkatesh Mani & Catarina Delgado & Benjamin T. Hazen & Purvishkumar Patel, 2017. "Mitigating Supply Chain Risk via Sustainability Using Big Data Analytics: Evidence from the Manufacturing Supply Chain," Sustainability, MDPI, vol. 9(4), pages 1-21, April.
    14. Centobelli, Piera & Cerchione, Roberto & Esposito, Emilio & Oropallo, Eugenio, 2021. "Surfing blockchain wave, or drowning? Shaping the future of distributed ledgers and decentralized technologies," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    15. Akhtar, Pervaiz & Tse, Ying Kei & Khan, Zaheer & Rao-Nicholson, Rekha, 2016. "Data-driven and adaptive leadership contributing to sustainability: global agri-food supply chains connected with emerging markets," International Journal of Production Economics, Elsevier, vol. 181(PB), pages 392-401.
    16. Pan Liu & Shu-ping Yi, 2018. "A study on supply chain investment decision-making and coordination in the Big Data environment," Annals of Operations Research, Springer, vol. 270(1), pages 235-253, November.
    17. J. Piet Hausberg & Kirsten Liere-Netheler & Sven Packmohr & Stefanie Pakura & Kristin Vogelsang, 2019. "Research streams on digital transformation from a holistic business perspective: a systematic literature review and citation network analysis," Journal of Business Economics, Springer, vol. 89(8), pages 931-963, December.
    18. Hazen, Benjamin T. & Weigel, Fred K. & Ezell, Jeremy D. & Boehmke, Bradley C. & Bradley, Randy V., 2017. "Toward understanding outcomes associated with data quality improvement," International Journal of Production Economics, Elsevier, vol. 193(C), pages 737-747.
    19. Arunachalam, Deepak & Kumar, Niraj & Kawalek, John Paul, 2018. "Understanding big data analytics capabilities in supply chain management: Unravelling the issues, challenges and implications for practice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 416-436.
    20. Pournader, Mehrdokht & Ghaderi, Hadi & Hassanzadegan, Amir & Fahimnia, Behnam, 2021. "Artificial intelligence applications in supply chain management," International Journal of Production Economics, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:114:y:2018:i:c:p:398-415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.