IDEAS home Printed from https://ideas.repec.org/a/bla/popmgt/v30y2021i5p1442-1456.html
   My bibliography  Save this article

Performance‐Price‐Ratio Utility: Market Equilibrium Analysis and Empirical Calibration Studies

Author

Listed:
  • Yangyang Xie
  • Lei Xie
  • Meng Lu
  • Houmin Yan

Abstract

In this study, as an alternative to the surplus utility, we propose a performance‐price‐ratio (PPR) utility and specialize the customer choice model with a PPR maximization criterion. With the PPR‐based choice model, we investigate a pricing game between retailers in a competitive market. Through transferring the decision variable from price to performance‐price ratio, the first‐order condition of the game becomes a linear equation system, which enables us to develop a closed‐form equilibrium solution. The solution reveals how product performance and price sensitivity affect equilibrium pricing, market share, and revenue. With the developed theoretical results, we carry out empirical studies with a rich data set obtained from the China TV market. At the individual product level and the brand level, we calibrate the PPR‐based choice model and the widely used surplus‐based model with a Bayesian information criteria‐based stepwise multivariate regression method. The regression results suggest that the PPR‐based model fits both the product‐level and brand‐level data better than the surplus‐based model. Through the stepwise selection of independent variables, we find that the leading features affecting a TV’s performance are 3D TV functionality and its screen size. Moreover, we explore how the market equilibrium evolves with the game decision sequence, market structure, and new product entry.

Suggested Citation

  • Yangyang Xie & Lei Xie & Meng Lu & Houmin Yan, 2021. "Performance‐Price‐Ratio Utility: Market Equilibrium Analysis and Empirical Calibration Studies," Production and Operations Management, Production and Operations Management Society, vol. 30(5), pages 1442-1456, May.
  • Handle: RePEc:bla:popmgt:v:30:y:2021:i:5:p:1442-1456
    DOI: 10.1111/poms.13331
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/poms.13331
    Download Restriction: no

    File URL: https://libkey.io/10.1111/poms.13331?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Erik Brynjolfsson & Yu (Jeffrey) Hu & Michael D. Smith, 2003. "Consumer Surplus in the Digital Economy: Estimating the Value of Increased Product Variety at Online Booksellers," Management Science, INFORMS, vol. 49(11), pages 1580-1596, November.
    2. Castillo, Enrique & Menéndez, José María & Jiménez, Pilar & Rivas, Ana, 2008. "Closed form expressions for choice probabilities in the Weibull case," Transportation Research Part B: Methodological, Elsevier, vol. 42(4), pages 373-380, May.
    3. A. Gürhan Kök & Yi Xu, 2011. "Optimal and Competitive Assortments with Endogenous Pricing Under Hierarchical Consumer Choice Models," Management Science, INFORMS, vol. 57(9), pages 1546-1563, February.
    4. Caplin, Andrew & Nalebuff, Barry, 1991. "Aggregation and Imperfect Competition: On the Existence of Equilibrium," Econometrica, Econometric Society, vol. 59(1), pages 25-59, January.
    5. Füsun Gönül & Kannan Srinivasan, 1993. "Modeling Multiple Sources of Heterogeneity in Multinomial Logit Models: Methodological and Managerial Issues," Marketing Science, INFORMS, vol. 12(3), pages 213-229.
    6. Hongmin Li & Woonghee Tim Huh, 2011. "Pricing Multiple Products with the Multinomial Logit and Nested Logit Models: Concavity and Implications," Manufacturing & Service Operations Management, INFORMS, vol. 13(4), pages 549-563, October.
    7. Eyal Biyalogorsky & Eitan Gerstner & Barak Libai, 2001. "Customer Referral Management: Optimal Reward Programs," Marketing Science, INFORMS, vol. 20(1), pages 82-95, August.
    8. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    9. Guillermo Gallego & Woonghee Tim Huh & Wanmo Kang & Robert Phillips, 2006. "Price Competition with the Attraction Demand Model: Existence of Unique Equilibrium and Its Stability," Manufacturing & Service Operations Management, INFORMS, vol. 8(4), pages 359-375, June.
    10. Fernando Bernstein & Awi Federgruen, 2004. "A General Equilibrium Model for Industries with Price and Service Competition," Operations Research, INFORMS, vol. 52(6), pages 868-886, December.
    11. Brian Lee & Paul Waddell, 2010. "Residential mobility and location choice: a nested logit model with sampling of alternatives," Transportation, Springer, vol. 37(4), pages 587-601, July.
    12. Anderson, Simon P. & Goeree, Jacob K. & Holt, Charles A., 2001. "Minimum-Effort Coordination Games: Stochastic Potential and Logit Equilibrium," Games and Economic Behavior, Elsevier, vol. 34(2), pages 177-199, February.
    13. Guillermo Gallego & Ruxian Wang, 2014. "Multiproduct Price Optimization and Competition Under the Nested Logit Model with Product-Differentiated Price Sensitivities," Operations Research, INFORMS, vol. 62(2), pages 450-461, April.
    14. Paat Rusmevichientong & Zuo-Jun Max Shen & David B. Shmoys, 2010. "Dynamic Assortment Optimization with a Multinomial Logit Choice Model and Capacity Constraint," Operations Research, INFORMS, vol. 58(6), pages 1666-1680, December.
    15. Gérard P. Cachon & A. Gürhan Kök, 2007. "Category Management and Coordination in Retail Assortment Planning in the Presence of Basket Shopping Consumers," Management Science, INFORMS, vol. 53(6), pages 934-951, June.
    16. Gang Liu, 2006. "On Nash equilibrium in prices in an oligopolistic market with demand characterized by a nested multinomial logit model and multiproduct firm as nest," Discussion Papers 454, Statistics Norway, Research Department.
    17. Ward Hanson & Kipp Martin, 1996. "Optimizing Multinomial Logit Profit Functions," Management Science, INFORMS, vol. 42(7), pages 992-1003, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guillermo Gallego & Ruxian Wang, 2014. "Multiproduct Price Optimization and Competition Under the Nested Logit Model with Product-Differentiated Price Sensitivities," Operations Research, INFORMS, vol. 62(2), pages 450-461, April.
    2. Chung‐seung Lee & Metin Çakanyildirim, 2021. "Price Competition Under Mixed Multinomial Logit Demand: Sufficiency Conditions for Validating the Model," Production and Operations Management, Production and Operations Management Society, vol. 30(9), pages 3272-3283, September.
    3. Margaret Aksoy-Pierson & Gad Allon & Awi Federgruen, 2013. "Price Competition Under Mixed Multinomial Logit Demand Functions," Management Science, INFORMS, vol. 59(8), pages 1817-1835, August.
    4. Hai Jiang & Rui Chen & He Sun, 2017. "Multiproduct price optimization under the multilevel nested logit model," Annals of Operations Research, Springer, vol. 254(1), pages 131-164, July.
    5. Hongmin Li & Woonghee Tim Huh, 2011. "Pricing Multiple Products with the Multinomial Logit and Nested Logit Models: Concavity and Implications," Manufacturing & Service Operations Management, INFORMS, vol. 13(4), pages 549-563, October.
    6. H. Sebastian Heese & Victor Martínez-de-Albéniz, 2018. "Effects of Assortment Breadth Announcements on Manufacturer Competition," Manufacturing & Service Operations Management, INFORMS, vol. 20(2), pages 302-316, May.
    7. Gallego, Guillermo & Li, Anran & Truong, Van-Anh & Wang, Xinshang, 2020. "Approximation algorithms for product framing and pricing," LSE Research Online Documents on Economics 101983, London School of Economics and Political Science, LSE Library.
    8. Woonghee T. Huh & Hongmin Li, 2023. "Product‐line pricing with dual objective of profit and consumer surplus," Production and Operations Management, Production and Operations Management Society, vol. 32(4), pages 1223-1242, April.
    9. Sentao Miao & Xiuli Chao, 2021. "Dynamic Joint Assortment and Pricing Optimization with Demand Learning," Manufacturing & Service Operations Management, INFORMS, vol. 23(2), pages 525-545, March.
    10. Hongmin Li & Scott Webster & Gwangjae Yu, 2020. "Product Design Under Multinomial Logit Choices: Optimization of Quality and Prices in an Evolving Product Line," Manufacturing & Service Operations Management, INFORMS, vol. 22(5), pages 1011-1025, September.
    11. Guillermo Gallego & Anran Li & Van-Anh Truong & Xinshang Wang, 2020. "Approximation Algorithms for Product Framing and Pricing," Operations Research, INFORMS, vol. 68(1), pages 134-160, January.
    12. Aydın Alptekinoğlu & John H. Semple, 2016. "The Exponomial Choice Model: A New Alternative for Assortment and Price Optimization," Operations Research, INFORMS, vol. 64(1), pages 79-93, February.
    13. Rui Chen & Hai Jiang, 2020. "Capacitated assortment and price optimization under the nested logit model," Journal of Global Optimization, Springer, vol. 77(4), pages 895-918, August.
    14. Pol Boada-Collado & Victor Martínez-de-Albéniz, 2020. "Estimating and Optimizing the Impact of Inventory on Consumer Choices in a Fashion Retail Setting," Manufacturing & Service Operations Management, INFORMS, vol. 22(3), pages 582-597, May.
    15. Felipe Caro & Victor Martínez-de-Albéniz, 2012. "Product and Price Competition with Satiation Effects," Management Science, INFORMS, vol. 58(7), pages 1357-1373, July.
    16. Volker Nocke & Nicolas Schutz, 2018. "Multiproduct‐Firm Oligopoly: An Aggregative Games Approach," Econometrica, Econometric Society, vol. 86(2), pages 523-557, March.
    17. Hongmin Li & Scott Webster, 2017. "Optimal Pricing of Correlated Product Options Under the Paired Combinatorial Logit Model," Operations Research, INFORMS, vol. 65(5), pages 1215-1230, October.
    18. W. Zachary Rayfield & Paat Rusmevichientong & Huseyin Topaloglu, 2015. "Approximation Methods for Pricing Problems Under the Nested Logit Model with Price Bounds," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 335-357, May.
    19. Ruxian Wang, 2018. "When Prospect Theory Meets Consumer Choice Models: Assortment and Pricing Management with Reference Prices," Manufacturing & Service Operations Management, INFORMS, vol. 20(3), pages 583-600, July.
    20. James M. Davis & Guillermo Gallego & Huseyin Topaloglu, 2014. "Assortment Optimization Under Variants of the Nested Logit Model," Operations Research, INFORMS, vol. 62(2), pages 250-273, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:popmgt:v:30:y:2021:i:5:p:1442-1456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1937-5956 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.