IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v31y2021i4p1332-1356.html
   My bibliography  Save this article

Young, timid, and risk takers

Author

Listed:
  • Paolo Guasoni
  • Lóránt Nagy
  • Miklós Rásonyi

Abstract

Time‐varying asset returns lead highly risk‐averse investors to choose market‐timing exposures that increase in their horizon, in agreement with the common advice to reduce risk with age, but in contrast to theoretical work that prescribes constant portfolio weights. In a market where an investor with constant absolute risk aversion and finite horizon trades an asset with temporary fluctuations, we find asymptotically optimal investment strategies that are independent of the asset's average return and decline over time with a power of the remaining horizon, with the exponent determined by the curvature of mean reversion. For long‐term safe assets, which have a zero average return, the investor's certainty equivalent declines over time at a lower rate, implying that a nonzero average return is negligible for asymptotically optimal strategies but critical to their performance.

Suggested Citation

  • Paolo Guasoni & Lóránt Nagy & Miklós Rásonyi, 2021. "Young, timid, and risk takers," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1332-1356, October.
  • Handle: RePEc:bla:mathfi:v:31:y:2021:i:4:p:1332-1356
    DOI: 10.1111/mafi.12329
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/mafi.12329
    Download Restriction: no

    File URL: https://libkey.io/10.1111/mafi.12329?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Merton, Robert C, 1973. "An Intertemporal Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 41(5), pages 867-887, September.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. Lo, Andrew W & Wang, Jiang, 1995. "Implementing Option Pricing Models When Asset Returns Are Predictable," Journal of Finance, American Finance Association, vol. 50(1), pages 87-129, March.
    4. Freddy Delbaen & Peter Grandits & Thorsten Rheinländer & Dominick Samperi & Martin Schweizer & Christophe Stricker, 2002. "Exponential Hedging and Entropic Penalties," Mathematical Finance, Wiley Blackwell, vol. 12(2), pages 99-123, April.
    5. He, Hua & Pearson, Neil D., 1991. "Consumption and portfolio policies with incomplete markets and short-sale constraints: The infinite dimensional case," Journal of Economic Theory, Elsevier, vol. 54(2), pages 259-304, August.
    6. Bruce D. Grundy, "undated". "Option Prices and the Underlying Asset's Return Distribution (Reprint 012)," Rodney L. White Center for Financial Research Working Papers 11-91, Wharton School Rodney L. White Center for Financial Research.
    7. Hua He & Neil D. Pearson, 1991. "Consumption and Portfolio Policies With Incomplete Markets and Short‐Sale Constraints: the Finite‐Dimensional Case1," Mathematical Finance, Wiley Blackwell, vol. 1(3), pages 1-10, July.
    8. Kim, Tong Suk & Omberg, Edward, 1996. "Dynamic Nonmyopic Portfolio Behavior," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 141-161.
    9. Cox, John C. & Huang, Chi-fu, 1989. "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, Elsevier, vol. 49(1), pages 33-83, October.
    10. Grundy, Bruce D, 1991. "Option Prices and the Underlying Asset's Return Distribution," Journal of Finance, American Finance Association, vol. 46(3), pages 1045-1069, July.
    11. Holger Kraft, 2005. "Optimal portfolios and Heston's stochastic volatility model: an explicit solution for power utility," Quantitative Finance, Taylor & Francis Journals, vol. 5(3), pages 303-313.
    12. Paolo Guasoni & Constantinos Kardaras & Scott Robertson & Hao Xing, 2014. "Abstract, classic, and explicit turnpikes," Finance and Stochastics, Springer, vol. 18(1), pages 75-114, January.
    13. Paolo Guasoni & Scott Robertson, 2012. "Portfolios and risk premia for the long run," Papers 1203.1399, arXiv.org.
    14. Jun Liu, 2007. "Portfolio Selection in Stochastic Environments," The Review of Financial Studies, Society for Financial Studies, vol. 20(1), pages 1-39, January.
    15. Duffie, Darrell & Fleming, Wendell & Soner, H. Mete & Zariphopoulou, Thaleia, 1997. "Hedging in incomplete markets with HARA utility," Journal of Economic Dynamics and Control, Elsevier, vol. 21(4-5), pages 753-782, May.
    16. Yuri M. Kabanov & Christophe Stricker, 2002. "On the optimal portfolio for the exponential utility maximization: remarks to the six‐author paper," Mathematical Finance, Wiley Blackwell, vol. 12(2), pages 125-134, April.
    17. Grundy, R.D., 1991. "Option Prices and the Underlying Asset's Return Distribution," Weiss Center Working Papers 11-91, Wharton School - Weiss Center for International Financial Research.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcin Pitera & Mikl'os R'asonyi, 2023. "Utility-based acceptability indices," Papers 2310.02014, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paolo Guasoni & Gu Wang, 2020. "Consumption in incomplete markets," Finance and Stochastics, Springer, vol. 24(2), pages 383-422, April.
    2. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    3. Romain Deguest & Lionel Martellini & Vincent Milhau, 2018. "A Reinterpretation of the Optimal Demand for Risky Assets in Fund Separation Theorems," Management Science, INFORMS, vol. 64(9), pages 4333-4347, September.
    4. Matoussi, Anis & Xing, Hao, 2018. "Convex duality for Epstein-Zin stochastic differential utility," LSE Research Online Documents on Economics 82519, London School of Economics and Political Science, LSE Library.
    5. Gerrard, Russell & Kyriakou, Ioannis & Nielsen, Jens Perch & Vodička, Peter, 2023. "On optimal constrained investment strategies for long-term savers in stochastic environments and probability hedging," European Journal of Operational Research, Elsevier, vol. 307(2), pages 948-962.
    6. John H. Cochrane, 2014. "A Mean-Variance Benchmark for Intertemporal Portfolio Theory," Journal of Finance, American Finance Association, vol. 69(1), pages 1-49, February.
    7. Jessica A. Wachter, 2010. "Asset Allocation," Annual Review of Financial Economics, Annual Reviews, vol. 2(1), pages 175-206, December.
    8. Schroder, Mark & Skiadas, Costis, 2005. "Lifetime consumption-portfolio choice under trading constraints, recursive preferences, and nontradeable income," Stochastic Processes and their Applications, Elsevier, vol. 115(1), pages 1-30, January.
    9. Anis Matoussi & Hao Xing, 2016. "Convex duality for stochastic differential utility," Papers 1601.03562, arXiv.org.
    10. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    11. repec:dau:papers:123456789/5374 is not listed on IDEAS
    12. Chenxu Li & O. Scaillet & Yiwen Shen, 2020. "Decomposition of Optimal Dynamic Portfolio Choice with Wealth-Dependent Utilities in Incomplete Markets," Swiss Finance Institute Research Paper Series 20-22, Swiss Finance Institute.
    13. Alain Bensoussan & Bong-Gyu Jang & Seyoung Park, 2016. "Unemployment Risks and Optimal Retirement in an Incomplete Market," Operations Research, INFORMS, vol. 64(4), pages 1015-1032, August.
    14. Mahan Tahvildari, 2021. "Forward indifference valuation and hedging of basis risk under partial information," Papers 2101.00251, arXiv.org.
    15. Lioui, Abraham, 2013. "Time consistent vs. time inconsistent dynamic asset allocation: Some utility cost calculations for mean variance preferences," Journal of Economic Dynamics and Control, Elsevier, vol. 37(5), pages 1066-1096.
    16. Christoph Belak & An Chen & Carla Mereu & Robert Stelzer, 2014. "Optimal investment with time-varying stochastic endowments," Papers 1406.6245, arXiv.org, revised Feb 2022.
    17. Kasper Larsen & Hang Yu, 2012. "Horizon dependence of utility optimizers in incomplete models," Finance and Stochastics, Springer, vol. 16(4), pages 779-801, October.
    18. Julien Hugonnier & Dmitry Kramkov, 2004. "Optimal investment with random endowments in incomplete markets," Papers math/0405293, arXiv.org.
    19. Chenxu Li & Olivier Scaillet & Yiwen Shen, 2020. "Wealth Effect on Portfolio Allocation in Incomplete Markets," Papers 2004.10096, arXiv.org, revised Aug 2021.
    20. Oleksii Mostovyi & Mihai Sîrbu, 2019. "Sensitivity analysis of the utility maximisation problem with respect to model perturbations," Finance and Stochastics, Springer, vol. 23(3), pages 595-640, July.
    21. Du Du & Heng-fu Zou, 2008. "Intertemporal Portfolio Choice under Multiple Types of Event Risks," CEMA Working Papers 332, China Economics and Management Academy, Central University of Finance and Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:31:y:2021:i:4:p:1332-1356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.