IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v30y2020i4p1229-1272.html
   My bibliography  Save this article

Robust risk aggregation with neural networks

Author

Listed:
  • Stephan Eckstein
  • Michael Kupper
  • Mathias Pohl

Abstract

We consider settings in which the distribution of a multivariate random variable is partly ambiguous. We assume the ambiguity lies on the level of the dependence structure, and that the marginal distributions are known. Furthermore, a current best guess for the distribution, called reference measure, is available. We work with the set of distributions that are both close to the given reference measure in a transportation distance (e.g., the Wasserstein distance), and additionally have the correct marginal structure. The goal is to find upper and lower bounds for integrals of interest with respect to distributions in this set. The described problem appears naturally in the context of risk aggregation. When aggregating different risks, the marginal distributions of these risks are known and the task is to quantify their joint effect on a given system. This is typically done by applying a meaningful risk measure to the sum of the individual risks. For this purpose, the stochastic interdependencies between the risks need to be specified. In practice, the models of this dependence structure are however subject to relatively high model ambiguity. The contribution of this paper is twofold: First, we derive a dual representation of the considered problem and prove that strong duality holds. Second, we propose a generally applicable and computationally feasible method, which relies on neural networks, in order to numerically solve the derived dual problem. The latter method is tested on a number of toy examples, before it is finally applied to perform robust risk aggregation in a real‐world instance.

Suggested Citation

  • Stephan Eckstein & Michael Kupper & Mathias Pohl, 2020. "Robust risk aggregation with neural networks," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1229-1272, October.
  • Handle: RePEc:bla:mathfi:v:30:y:2020:i:4:p:1229-1272
    DOI: 10.1111/mafi.12280
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/mafi.12280
    Download Restriction: no

    File URL: https://libkey.io/10.1111/mafi.12280?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Aude Geneway & Gabriel Peyré & Marco Cuturi, 2017. "Learning Generative Models with Sinkhorn Divergences," Working Papers 2017-83, Center for Research in Economics and Statistics.
    2. NESTEROV, Yurii, 2012. "Efficiency of coordinate descent methods on huge-scale optimization problems," LIDAM Reprints CORE 2511, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Chang, Chia-Lin & Jimenez-Martin, Juan-Angel & Maasoumi, Esfandiar & McAleer, Michael & Pérez-Amaral, Teodosio, 2019. "Choosing expected shortfall over VaR in Basel III using stochastic dominance," International Review of Economics & Finance, Elsevier, vol. 60(C), pages 95-113.
    4. Paul Embrechts & Bin Wang & Ruodu Wang, 2015. "Aggregation-robustness and model uncertainty of regulatory risk measures," Finance and Stochastics, Springer, vol. 19(4), pages 763-790, October.
    5. Carole Bernard & Ludger Rüschendorf & Steven Vanduffel & Ruodu Wang, 2017. "Risk bounds for factor models," Finance and Stochastics, Springer, vol. 21(3), pages 631-659, July.
    6. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    7. Daniel Bartl & Samuel Drapeau & Ludovic Tangpi, 2017. "Computational aspects of robust optimized certainty equivalents and option pricing," Papers 1706.10186, arXiv.org, revised Mar 2019.
    8. Paul Embrechts & Giovanni Puccetti, 2006. "Bounds for Functions of Dependent Risks," Finance and Stochastics, Springer, vol. 10(3), pages 341-352, September.
    9. Georg Pflug & David Wozabal, 2007. "Ambiguity in portfolio selection," Quantitative Finance, Taylor & Francis Journals, vol. 7(4), pages 435-442.
    10. Jose Blanchet & Karthyek Murthy, 2019. "Quantifying Distributional Model Risk via Optimal Transport," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 565-600, May.
    11. Stephan Eckstein & Michael Kupper, 2018. "Computation of optimal transport and related hedging problems via penalization and neural networks," Papers 1802.08539, arXiv.org, revised Jan 2019.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Kupper & Max Nendel & Alessandro Sgarabottolo, 2023. "Risk measures based on weak optimal transport," Papers 2312.05973, arXiv.org.
    2. Max Nendel & Alessandro Sgarabottolo, 2022. "A parametric approach to the estimation of convex risk functionals based on Wasserstein distance," Papers 2210.14340, arXiv.org, revised Aug 2024.
    3. Ariel Neufeld & Matthew Ng Cheng En & Ying Zhang, 2024. "Robust SGLD algorithm for solving non-convex distributionally robust optimisation problems," Papers 2403.09532, arXiv.org.
    4. Xia Han & Peng Liu, 2024. "Robust Lambda-quantiles and extreme probabilities," Papers 2406.13539, arXiv.org.
    5. Yuyu Chen & Peng Liu & Yang Liu & Ruodu Wang, 2022. "Ordering and inequalities for mixtures on risk aggregation," Mathematical Finance, Wiley Blackwell, vol. 32(1), pages 421-451, January.
    6. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2023. "Model-Free Bounds for Multi-Asset Options Using Option-Implied Information and Their Exact Computation," Management Science, INFORMS, vol. 69(4), pages 2051-2068, April.
    7. Yuyu Chen & Peng Liu & Yang Liu & Ruodu Wang, 2020. "Ordering and Inequalities for Mixtures on Risk Aggregation," Papers 2007.12338, arXiv.org, revised Jun 2021.
    8. Bingyan Han, 2022. "Distributionally robust risk evaluation with a causality constraint and structural information," Papers 2203.10571, arXiv.org, revised Aug 2024.
    9. Laurens Van Mieghem & Antonis Papapantoleon & Jonas Papazoglou-Hennig, 2023. "Machine learning for option pricing: an empirical investigation of network architectures," Papers 2307.07657, arXiv.org.
    10. Ariel Neufeld & Julian Sester & Daiying Yin, 2022. "Detecting data-driven robust statistical arbitrage strategies with deep neural networks," Papers 2203.03179, arXiv.org, revised Feb 2024.
    11. Ariel Neufeld & Philipp Schmocker, 2022. "Chaotic Hedging with Iterated Integrals and Neural Networks," Papers 2209.10166, arXiv.org, revised Jul 2024.
    12. Ariel Neufeld & Julian Sester, 2021. "A deep learning approach to data-driven model-free pricing and to martingale optimal transport," Papers 2103.11435, arXiv.org, revised Dec 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephan Eckstein & Michael Kupper & Mathias Pohl, 2018. "Robust risk aggregation with neural networks," Papers 1811.00304, arXiv.org, revised May 2020.
    2. Carole Bernard & Silvana M. Pesenti & Steven Vanduffel, 2024. "Robust distortion risk measures," Mathematical Finance, Wiley Blackwell, vol. 34(3), pages 774-818, July.
    3. Viet Anh Nguyen & Fan Zhang & Shanshan Wang & Jose Blanchet & Erick Delage & Yinyu Ye, 2021. "Robustifying Conditional Portfolio Decisions via Optimal Transport," Papers 2103.16451, arXiv.org, revised Apr 2024.
    4. Xia Han & Peng Liu, 2024. "Robust Lambda-quantiles and extreme probabilities," Papers 2406.13539, arXiv.org.
    5. Silvana Pesenti & Qiuqi Wang & Ruodu Wang, 2020. "Optimizing distortion riskmetrics with distributional uncertainty," Papers 2011.04889, arXiv.org, revised Feb 2022.
    6. Lux, Thibaut & Papapantoleon, Antonis, 2019. "Model-free bounds on Value-at-Risk using extreme value information and statistical distances," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 73-83.
    7. Jose Blanchet & Lin Chen & Xun Yu Zhou, 2022. "Distributionally Robust Mean-Variance Portfolio Selection with Wasserstein Distances," Management Science, INFORMS, vol. 68(9), pages 6382-6410, September.
    8. Feng Liu & Zhi Chen & Shuming Wang, 2023. "Globalized Distributionally Robust Counterpart," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1120-1142, September.
    9. Rüschendorf, L., 2019. "Analysis of risk bounds in partially specified additive factor models," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 115-121.
    10. Daniel Bartl & Johannes Wiesel, 2022. "Sensitivity of multiperiod optimization problems in adapted Wasserstein distance," Papers 2208.05656, arXiv.org, revised Jun 2023.
    11. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    12. Thibaut Lux & Antonis Papapantoleon, 2016. "Model-free bounds on Value-at-Risk using extreme value information and statistical distances," Papers 1610.09734, arXiv.org, revised Nov 2018.
    13. Manish Bansal & Yingqiu Zhang, 2021. "Scenario-based cuts for structured two-stage stochastic and distributionally robust p-order conic mixed integer programs," Journal of Global Optimization, Springer, vol. 81(2), pages 391-433, October.
    14. Henryk Zähle, 2022. "A concept of copula robustness and its applications in quantitative risk management," Finance and Stochastics, Springer, vol. 26(4), pages 825-875, October.
    15. Jiang, Jie & Peng, Shen, 2024. "Mathematical programs with distributionally robust chance constraints: Statistical robustness, discretization and reformulation," European Journal of Operational Research, Elsevier, vol. 313(2), pages 616-627.
    16. Xin Hai & Gregoire Loeper & Kihun Nam, 2023. "Data-driven Multiperiod Robust Mean-Variance Optimization," Papers 2306.16681, arXiv.org, revised Jul 2023.
    17. Ran Ji & Miguel A. Lejeune, 2021. "Data-Driven Optimization of Reward-Risk Ratio Measures," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1120-1137, July.
    18. Daniel Bartl & Samuel Drapeau & Jan Obloj & Johannes Wiesel, 2020. "Sensitivity analysis of Wasserstein distributionally robust optimization problems," Papers 2006.12022, arXiv.org, revised Nov 2021.
    19. Steffen Rebennack, 2022. "Data-driven stochastic optimization for distributional ambiguity with integrated confidence region," Journal of Global Optimization, Springer, vol. 84(2), pages 255-293, October.
    20. Wu, Zhongqi & Jiang, Hui & Zhou, Yangye & Li, Haoyan, 2024. "Enhancing emergency medical service location model for spatial accessibility and equity under random demand and travel time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:30:y:2020:i:4:p:1229-1272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.