IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1109.1075.html
   My bibliography  Save this paper

Existence, uniqueness, and global regularity for degenerate elliptic obstacle problems in mathematical finance

Author

Listed:
  • Panagiota Daskalopoulos
  • Paul M. N. Feehan

Abstract

The Heston stochastic volatility process, which is widely used as an asset price model in mathematical finance, is a paradigm for a degenerate diffusion process where the degeneracy in the diffusion coefficient is proportional to the square root of the distance to the boundary of the half-plane. The generator of this process with killing, called the elliptic Heston operator, is a second-order degenerate elliptic partial differential operator whose coefficients have linear growth in the spatial variables and where the degeneracy in the operator symbol is proportional to the distance to the boundary of the half-plane. With the aid of weighted Sobolev spaces, we prove existence, uniqueness, and global regularity of solutions to stationary variational inequalities and obstacle problems for the elliptic Heston operator on unbounded subdomains of the half-plane. In mathematical finance, solutions to obstacle problems for the elliptic Heston operator correspond to value functions for perpetual American-style options on the underlying asset.

Suggested Citation

  • Panagiota Daskalopoulos & Paul M. N. Feehan, 2011. "Existence, uniqueness, and global regularity for degenerate elliptic obstacle problems in mathematical finance," Papers 1109.1075, arXiv.org.
  • Handle: RePEc:arx:papers:1109.1075
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1109.1075
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. JosE Da Fonseca & Martino Grasselli & Claudio Tebaldi, 2008. "A multifactor volatility Heston model," Quantitative Finance, Taylor & Francis Journals, vol. 8(6), pages 591-604.
    2. Xinfu Chen & John Chadam & Lishang Jiang & Weian Zheng, 2008. "Convexity Of The Exercise Boundary Of The American Put Option On A Zero Dividend Asset," Mathematical Finance, Wiley Blackwell, vol. 18(1), pages 185-197, January.
    3. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    4. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    5. Ekström, Erik, 2004. "Properties of American option prices," Stochastic Processes and their Applications, Elsevier, vol. 114(2), pages 265-278, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael A. Kouritzin, 2016. "Explicit Heston Solutions and Stochastic Approximation for Path-dependent Option Pricing," Papers 1608.02028, arXiv.org, revised Apr 2018.
    2. Michael A. Kouritzin, 2018. "Explicit Heston Solutions And Stochastic Approximation For Path-Dependent Option Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(01), pages 1-45, February.
    3. A. Canale & R. M. Mininni & A. Rhandi, 2014. "Analitic approach to solve a degenerate parabolic PDE for the Heston model," Papers 1406.2292, arXiv.org.
    4. Philipp Doersek & Eskil Hansen, 2012. "High order splitting schemes with complex timesteps and their application in mathematical finance," Papers 1210.5392, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcos Escobar & Christoph Gschnaidtner, 2018. "A multivariate stochastic volatility model with applications in the foreign exchange market," Review of Derivatives Research, Springer, vol. 21(1), pages 1-43, April.
    2. Chulmin Kang & Wanmo Kang & Jong Mun Lee, 2017. "Exact Simulation of the Wishart Multidimensional Stochastic Volatility Model," Operations Research, INFORMS, vol. 65(5), pages 1190-1206, October.
    3. Chulmin Kang & Wanmo Kang, 2013. "Exact Simulation of Wishart Multidimensional Stochastic Volatility Model," Papers 1309.0557, arXiv.org.
    4. Lorenzo Torricelli, 2016. "Valuation of asset and volatility derivatives using decoupled time-changed Lévy processes," Review of Derivatives Research, Springer, vol. 19(1), pages 1-39, April.
    5. Lucio Fiorin & Wim Schoutens, 2020. "Conic quantization: stochastic volatility and market implied liquidity," Quantitative Finance, Taylor & Francis Journals, vol. 20(4), pages 531-542, April.
    6. Paul M. N. Feehan & Camelia A. Pop, 2011. "Boundary-degenerate elliptic operators and Holder continuity for solutions to variational equations and inequalities," Papers 1110.5594, arXiv.org, revised Mar 2016.
    7. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    8. Detlefsen, Kai & Härdle, Wolfgang Karl, 2006. "Forecasting the term structure of variance swaps," SFB 649 Discussion Papers 2006-052, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    9. Carvalho, Augusto & Guimaraes, Bernardo, 2018. "State-controlled companies and political risk: Evidence from the 2014 Brazilian election," Journal of Public Economics, Elsevier, vol. 159(C), pages 66-78.
    10. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.
    11. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    12. Peng He, 2012. "Option Portfolio Value At Risk Using Monte Carlo Simulation Under A Risk Neutral Stochastic Implied Volatility Model," Global Journal of Business Research, The Institute for Business and Finance Research, vol. 6(5), pages 65-72.
    13. Bollerslev, Tim & Gibson, Michael & Zhou, Hao, 2011. "Dynamic estimation of volatility risk premia and investor risk aversion from option-implied and realized volatilities," Journal of Econometrics, Elsevier, vol. 160(1), pages 235-245, January.
    14. Yeap, Claudia & Kwok, Simon S. & Choy, S. T. Boris, 2016. "A Flexible Generalised Hyperbolic Option Pricing Model and its Special Cases," Working Papers 2016-14, University of Sydney, School of Economics.
    15. Chang, Eric C. & Ren, Jinjuan & Shi, Qi, 2009. "Effects of the volatility smile on exchange settlement practices: The Hong Kong case," Journal of Banking & Finance, Elsevier, vol. 33(1), pages 98-112, January.
    16. Gaetano Bua & Daniele Marazzina, 2021. "On the application of Wishart process to the pricing of equity derivatives: the multi-asset case," Computational Management Science, Springer, vol. 18(2), pages 149-176, June.
    17. Leonidas S. Rompolis & Elias Tzavalis, 2017. "Pricing and hedging contingent claims using variance and higher order moment swaps," Quantitative Finance, Taylor & Francis Journals, vol. 17(4), pages 531-550, April.
    18. Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2021. "Closed-form implied volatility surfaces for stochastic volatility models with jumps," Journal of Econometrics, Elsevier, vol. 222(1), pages 364-392.
    19. Diego Amaya & Jean-François Bégin & Geneviève Gauthier, 2022. "The Informational Content of High-Frequency Option Prices," Management Science, INFORMS, vol. 68(3), pages 2166-2201, March.
    20. H. Bertholon & A. Monfort & F. Pegoraro, 2008. "Econometric Asset Pricing Modelling," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 407-458, Fall.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1109.1075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.