IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v13y2003i1p171-185.html
   My bibliography  Save this article

An Anticipating Calculus Approach to the Utility Maximization of an Insider

Author

Listed:
  • Jorge A. León
  • Reyla Navarro
  • David Nualart

Abstract

In this paper we consider a financial market with an insider that has, at time t= 0, some additional information of the whole developing of the market. We use the forward integral, which is an anticipating integral, and the techniques of the Malliavin calculus so that we can take advantage of the privileged information to maximize the expected logarithmic utility from terminal wealth.

Suggested Citation

  • Jorge A. León & Reyla Navarro & David Nualart, 2003. "An Anticipating Calculus Approach to the Utility Maximization of an Insider," Mathematical Finance, Wiley Blackwell, vol. 13(1), pages 171-185, January.
  • Handle: RePEc:bla:mathfi:v:13:y:2003:i:1:p:171-185
    DOI: 10.1111/1467-9965.00012
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9965.00012
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9965.00012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Föllmer, Hans & Wu, Ching-Tang & Yor, Marc, 1999. "Canonical decomposition of linear transformations of two independent Brownian motions motivated by models of insider trading," Stochastic Processes and their Applications, Elsevier, vol. 84(1), pages 137-164, November.
    2. Amendinger, Jürgen & Imkeller, Peter & Schweizer, Martin, 1998. "Additional logarithmic utility of an insider," Stochastic Processes and their Applications, Elsevier, vol. 75(2), pages 263-286, July.
    3. Amendinger, Jürgen, 2000. "Martingale representation theorems for initially enlarged filtrations," Stochastic Processes and their Applications, Elsevier, vol. 89(1), pages 101-116, September.
    4. Amendinger, Jürgen & Imkeller, Peter & Schweizer, Martin, 1998. "Additional logarithmic utility of an insider," SFB 373 Discussion Papers 1998,25, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    5. Back, Kerry, 1992. "Insider Trading in Continuous Time," The Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 387-409.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elisa Alòs & Christian-Olivier Ewald, 2005. "A note on the Malliavin differentiability of the Heston volatility," Economics Working Papers 880, Department of Economics and Business, Universitat Pompeu Fabra.
    2. Zhaojun Yang & Christian-Oliver Ewald & Olaf Menkens, 2011. "Pricing and hedging of Asian options: quasi-explicit solutions via Malliavin calculus," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(1), pages 93-120, August.
    3. Mohamed Ben Alaya & Ahmed Kebaier & Ngoc Khue Tran, 2020. "Local asymptotic properties for Cox‐Ingersoll‐Ross process with discrete observations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1401-1464, December.
    4. Elisa Alòs & Jorge A. León, 2021. "An Intuitive Introduction to Fractional and Rough Volatilities," Mathematics, MDPI, vol. 9(9), pages 1-22, April.
    5. Anne Eyraud-Loisel, 2013. "Quadratic hedging in an incomplete market derived by an influent informed investor," Post-Print hal-00450949, HAL.
    6. Edward Hoyle & Andrea Macrina & Levent A. Menguturk, 2017. "Modulated Information Flows in Financial Markets," Papers 1708.06948, arXiv.org, revised May 2020.
    7. Carlos Escudero & Sandra Ranilla-Cortina, 2020. "Optimal portfolios for different anticipating integrals under insider information," Papers 2007.02316, arXiv.org, revised Jan 2021.
    8. Christian-Oliver Ewald & Aihua Zhang, 2006. "A new technique for calibrating stochastic volatility models: the Malliavin gradient method," Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 147-158.
    9. Hyungbin Park, 2021. "Influence of risk tolerance on long-term investments: A Malliavin calculus approach," Papers 2104.00911, arXiv.org.
    10. Carlos Escudero & Sandra Ranilla-Cortina, 2020. "Optimal Portfolios for Different Anticipating Integrals under Insider Information," Mathematics, MDPI, vol. 9(1), pages 1-19, December.
    11. Peng, Xingchun & Wang, Wenyuan, 2016. "Optimal investment and risk control for an insurer under inside information," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 104-116.
    12. Mauricio Elizalde & Carlos Escudero & Tomoyuki Ichiba, 2022. "Optimal investment with insider information using Skorokhod & Russo-Vallois integration," Papers 2211.07471, arXiv.org, revised Dec 2024.
    13. Mengütürk, Levent Ali, 2018. "Gaussian random bridges and a geometric model for information equilibrium," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 465-483.
    14. Bernardo D'Auria & Carlos Escudero, 2024. "Time evaluation of portfolio for asymmetrically informed traders," Papers 2410.16010, arXiv.org.
    15. Giulia Di Nunno & Steffen Sjursen, 2013. "Information and optimal investment in defaultable assets," Papers 1312.6032, arXiv.org.
    16. Mattias Jonsson & Jan Vecer, 2005. "Insider Trading in Convergent Markets," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(3), pages 243-252.
    17. Mauricio Elizalde & Carlos Escudero, 2021. "Chances for the honest in honest versus insider trading," Papers 2106.10033, arXiv.org, revised May 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scott Robertson, 2023. "Equilibrium with Heterogeneous Information Flows," Papers 2304.01272, arXiv.org, revised Mar 2024.
    2. Mengütürk, Levent Ali, 2018. "Gaussian random bridges and a geometric model for information equilibrium," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 465-483.
    3. Caroline HILLAIRET & Cody HYNDMAN & Ying JIAO & Renjie WANG, 2017. "Trading against disorderly liquidation of a large position under asymmetric information and market impact," Working Papers 2017-76, Center for Research in Economics and Statistics.
    4. Caroline Hillairet & Cody Hyndman & Ying Jiao & Renjie Wang, 2016. "Trading against disorderly liquidation of a large position under asymmetric information and market impact," Papers 1610.01937, arXiv.org.
    5. Ernst, Philip A. & Rogers, L.C.G. & Zhou, Quan, 2017. "The value of foresight," Stochastic Processes and their Applications, Elsevier, vol. 127(12), pages 3913-3927.
    6. Beatrice Acciaio & Claudio Fontana & Constantinos Kardaras, 2014. "Arbitrage of the first kind and filtration enlargements in semimartingale financial models," Papers 1401.7198, arXiv.org, revised May 2015.
    7. Fontana, Claudio, 2018. "The strong predictable representation property in initially enlarged filtrations under the density hypothesis," Stochastic Processes and their Applications, Elsevier, vol. 128(3), pages 1007-1033.
    8. Peter Imkeller & Nicolas Perkowski, 2015. "The existence of dominating local martingale measures," Finance and Stochastics, Springer, vol. 19(4), pages 685-717, October.
    9. Dolinsky, Yan & Zouari, Jonathan, 2021. "The value of insider information for super-replication with quadratic transaction costs," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 394-416.
    10. José Manuel Corcuera & Giulia Nunno & José Fajardo, 2019. "Kyle equilibrium under random price pressure," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 77-101, June.
    11. Tahir Choulli & Sina Yansori, 2022. "Log-optimal and numéraire portfolios for market models stopped at a random time," Finance and Stochastics, Springer, vol. 26(3), pages 535-585, July.
    12. Jos'e Manuel Corcuera & Giulia Di Nunno & Gergely Farkas & Bernt {O}ksendal, 2014. "A continuous auction model with insiders and random time of information release," Papers 1411.2835, arXiv.org, revised Mar 2018.
    13. Peter Imkeller, 2003. "Malliavin's Calculus in Insider Models: Additional Utility and Free Lunches," Mathematical Finance, Wiley Blackwell, vol. 13(1), pages 153-169, January.
    14. Geoff Lindsell, 2022. "Convergence of Optimal Expected Utility for a Sequence of Discrete-Time Markets in Initially Enlarged Filtrations," Papers 2203.08859, arXiv.org, revised Mar 2022.
    15. Claudio Fontana, 2015. "The strong predictable representation property in initially enlarged filtrations under the density hypothesis," Papers 1508.03282, arXiv.org, revised Jun 2017.
    16. Huy N. Chau & Andrea Cosso & Claudio Fontana, 2018. "The value of informational arbitrage," Papers 1804.00442, arXiv.org.
    17. Acciaio, Beatrice & Fontana, Claudio & Kardaras, Constantinos, 2016. "Arbitrage of the first kind and filtration enlargements in semimartingale financial models," LSE Research Online Documents on Economics 65150, London School of Economics and Political Science, LSE Library.
    18. H'el`ene Halconruy, 2021. "The insider problem in the trinomial model: a discrete-time jump process approach," Papers 2106.15208, arXiv.org, revised Sep 2023.
    19. Imkeller, Peter & Pontier, Monique & Weisz, Ferenc, 2001. "Free lunch and arbitrage possibilities in a financial market model with an insider," Stochastic Processes and their Applications, Elsevier, vol. 92(1), pages 103-130, March.
    20. Hillairet, Caroline, 2005. "Comparison of insiders' optimal strategies depending on the type of side-information," Stochastic Processes and their Applications, Elsevier, vol. 115(10), pages 1603-1627, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:13:y:2003:i:1:p:171-185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.