IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v35y2016i7p1173-1193.html
   My bibliography  Save this article

A General Quantile Function Model for Economic and Financial Time Series

Author

Listed:
  • Yuzhi Cai

Abstract

This article proposed a general quantile function model that covers both one- and multiple-dimensional models and that takes several existing models in the literature as its special cases. This article also developed a new uniform Bayesian framework for quantile function modelling and illustrated the developed approach through different quantile function models. Many distributions are defined explicitly only via their quanitle functions as the corresponding distribution or density functions do not have an explicit mathematical expression. Such distributions are rarely used in economic and financial modelling in practice. The developed methodology makes it more convenient to use these distributions in analyzing economic and financial data. Empirical applications to economic and financial time series and comparisons with other types of models and methods show that the developed method can be very useful in practice.

Suggested Citation

  • Yuzhi Cai, 2016. "A General Quantile Function Model for Economic and Financial Time Series," Econometric Reviews, Taylor & Francis Journals, vol. 35(7), pages 1173-1193, August.
  • Handle: RePEc:taf:emetrv:v:35:y:2016:i:7:p:1173-1193
    DOI: 10.1080/07474938.2014.976528
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07474938.2014.976528
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474938.2014.976528?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gareth W. Peters, 2018. "General Quantile Time Series Regressions for Applications in Population Demographics," Risks, MDPI, vol. 6(3), pages 1-47, September.
    2. Yuzhi Cai & Guodong Li, 2018. "A novel approach to modelling the distribution of financial returns," Working Papers 2018-22, Swansea University, School of Management.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:35:y:2016:i:7:p:1173-1193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.