IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v44y2023i2p181-205.html
   My bibliography  Save this article

Estimation of the variance function in structural break autoregressive models with non‐stationary and explosive segments

Author

Listed:
  • David I. Harvey
  • Stephen J. Leybourne
  • Yang Zu

Abstract

In this article, we consider estimating the innovation variance function when the conditional mean model is characterised by a structural break autoregressive model, which exhibits multiple unit root, explosive and stationary collapse segments, allowing for behaviour often seen in financial data where bubble and crash episodes are present. Estimating the variance function normally proceeds in two steps: estimating the conditional mean model, then using the residuals to estimate the variance function. In this article, a non‐parametric approach is proposed to estimate the complicated parametric conditional mean model in the first step. The approach turns out to provide a convenient solution to the problem and achieve robustness to any structural break features in the conditional mean model without the need of estimating them parametrically. In the second step, kernel‐smoothed squares of the truncated first‐step residuals are shown to consistently estimate the variance function. In Monte Carlo simulations, we show that our proposed method performs very well in the presence of explosive and stationary collapse segments compared with the popular rolling standard deviation estimator that is commonly used in economics and finance. As an empirical illustration of our new approach, we apply the volatility estimator to recent Bitcoin data.

Suggested Citation

  • David I. Harvey & Stephen J. Leybourne & Yang Zu, 2023. "Estimation of the variance function in structural break autoregressive models with non‐stationary and explosive segments," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(2), pages 181-205, March.
  • Handle: RePEc:bla:jtsera:v:44:y:2023:i:2:p:181-205
    DOI: 10.1111/jtsa.12660
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jtsa.12660
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jtsa.12660?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    2. repec:bla:jfinan:v:53:y:1998:i:6:p:2243-2257 is not listed on IDEAS
    3. Li, Degui & Phillips, Peter C. B. & Gao, Jiti, 2016. "Uniform Consistency Of Nonstationary Kernel-Weighted Sample Covariances For Nonparametric Regression," Econometric Theory, Cambridge University Press, vol. 32(3), pages 655-685, June.
    4. Peter C. B. Phillips & Yangru Wu & Jun Yu, 2011. "EXPLOSIVE BEHAVIOR IN THE 1990s NASDAQ: WHEN DID EXUBERANCE ESCALATE ASSET VALUES?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(1), pages 201-226, February.
    5. Brendan K. Beare, 2018. "Unit Root Testing with Unstable Volatility," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 816-835, November.
    6. Xu, Ke-Li & Phillips, Peter C.B., 2008. "Adaptive estimation of autoregressive models with time-varying variances," Journal of Econometrics, Elsevier, vol. 142(1), pages 265-280, January.
    7. Officer, R R, 1973. "The Variability of the Market Factor of the New York Stock Exchange," The Journal of Business, University of Chicago Press, vol. 46(3), pages 434-453, July.
    8. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    9. Phillips, Peter C.B. & Li, Degui & Gao, Jiti, 2017. "Estimating smooth structural change in cointegration models," Journal of Econometrics, Elsevier, vol. 196(1), pages 180-195.
    10. Valentin Patilea & Hamdi Raïssi, 2014. "Testing Second-Order Dynamics for Autoregressive Processes in Presence of Time-Varying Variance," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1099-1111, September.
    11. Giuseppe Cavaliere & Morten Ørregaard Nielsen & A. M. Robert Taylor, 2022. "Adaptive Inference in Heteroscedastic Fractional Time Series Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 50-65, January.
    12. Ngai Hang Chan & Chun Yip Yau & Rong-Mao Zhang, 2014. "Group LASSO for Structural Break Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 590-599, June.
    13. Zhongjun Qu & Pierre Perron, 2007. "Estimating and Testing Structural Changes in Multivariate Regressions," Econometrica, Econometric Society, vol. 75(2), pages 459-502, March.
    14. Davis, Richard A. & Lee, Thomas C.M. & Rodriguez-Yam, Gabriel A., 2006. "Structural Break Estimation for Nonstationary Time Series Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 223-239, March.
    15. Francq, Christian & Zakoian, Jean-Michel, 2021. "Testing the existence of moments and estimating the tail index of augmented garch processes," MPRA Paper 110511, University Library of Munich, Germany.
    16. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    17. Fan, Jianqing & Yao, Qiwei, 1998. "Efficient estimation of conditional variance functions in stochastic regression," LSE Research Online Documents on Economics 6635, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karsten Schweikert, 2022. "Oracle Efficient Estimation of Structural Breaks in Cointegrating Regressions," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 83-104, January.
    2. Karsten Schweikert, 2020. "Oracle Efficient Estimation of Structural Breaks in Cointegrating Regressions," Papers 2001.07949, arXiv.org, revised Apr 2021.
    3. Davis, Richard A. & Hancock, Stacey A. & Yao, Yi-Ching, 2016. "On consistency of minimum description length model selection for piecewise autoregressions," Journal of Econometrics, Elsevier, vol. 194(2), pages 360-368.
    4. Kurozumi, Eiji & Tuvaandorj, Purevdorj, 2011. "Model selection criteria in multivariate models with multiple structural changes," Journal of Econometrics, Elsevier, vol. 164(2), pages 218-238, October.
    5. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Boston University - Department of Economics - Working Papers Series WP2019-02, Boston University - Department of Economics.
    6. Ardia, David & Dufays, Arnaud & Ordás Criado, Carlos, 2023. "Linking Frequentist and Bayesian Change-Point Methods," MPRA Paper 119486, University Library of Munich, Germany.
    7. Pierre Perron & Yohei Yamamoto, 2022. "Structural change tests under heteroskedasticity: Joint estimation versus two‐steps methods," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 389-411, May.
    8. Umar, Muhammad & Su, Chi-Wei & Rizvi, Syed Kumail Abbas & Lobonţ, Oana-Ramona, 2021. "Driven by fundamentals or exploded by emotions: Detecting bubbles in oil prices," Energy, Elsevier, vol. 231(C).
    9. Kim, Dukpa & Oka, Tatsushi & Estrada, Francisco & Perron, Pierre, 2020. "Inference related to common breaks in a multivariate system with joined segmented trends with applications to global and hemispheric temperatures," Journal of Econometrics, Elsevier, vol. 214(1), pages 130-152.
    10. Jamal Bouoiyour, Refk Selmi, 2019. "Brexit and CDS spillovers across UK and Europe," European Journal of Comparative Economics, Cattaneo University (LIUC), vol. 16(1), pages 105-124, June.
    11. Mahamitra Das & Nityananda Sarkar, 2020. "Revisiting the Anomalous Relationship between Inflation and Real Estate Investment Trust Returns in Presence of Structural Breaks: Empirical Evidence from the USA and the UK," International Journal of Economics and Financial Issues, Econjournals, vol. 10(1), pages 250-258.
    12. Boldea, Otilia & Hall, Alastair R., 2013. "Estimation and inference in unstable nonlinear least squares models," Journal of Econometrics, Elsevier, vol. 172(1), pages 158-167.
    13. Alastair R. Hall & Denise R. Osborn & Nikolaos Sakkas, 2017. "The asymptotic behaviour of the residual sum of squares in models with multiple break points," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 667-698, October.
    14. Mohitosh Kejriwal & Xuewen Yu & Pierre Perron, 2020. "Bootstrap procedures for detecting multiple persistence shifts in heteroskedastic time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(5), pages 676-690, September.
    15. Lui, Yiu Lim & Phillips, Peter C.B. & Yu, Jun, 2024. "Robust testing for explosive behavior with strongly dependent errors," Journal of Econometrics, Elsevier, vol. 238(2).
    16. Liao, Huei-Chu & Lee, Yi-Huey & Suen, Yu-Bo, 2008. "Electronic trading system and returns volatility in the oil futures market," Energy Economics, Elsevier, vol. 30(5), pages 2636-2644, September.
    17. Esteve Vicente & Prats Maria A., 2021. "Structural Breaks and Explosive Behavior in the Long-Run: The Case of Australian Real House Prices, 1870–2020," Economics - The Open-Access, Open-Assessment Journal, De Gruyter, vol. 15(1), pages 72-84, January.
    18. Duan, Jiangtao & Bai, Jushan & Han, Xu, 2023. "Quasi-maximum likelihood estimation of break point in high-dimensional factor models," Journal of Econometrics, Elsevier, vol. 233(1), pages 209-236.
    19. Baltagi, Badi H. & Feng, Qu & Kao, Chihwa, 2016. "Estimation of heterogeneous panels with structural breaks," Journal of Econometrics, Elsevier, vol. 191(1), pages 176-195.
    20. Yunjong Eo & James Morley, 2022. "Why Has the U.S. Economy Stagnated since the Great Recession?," The Review of Economics and Statistics, MIT Press, vol. 104(2), pages 246-258, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:44:y:2023:i:2:p:181-205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.