IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v116y2021i534p819-832.html
   My bibliography  Save this article

Intrinsic Wavelet Regression for Curves of Hermitian Positive Definite Matrices

Author

Listed:
  • Joris Chau
  • Rainer von Sachs

Abstract

Intrinsic wavelet transforms and wavelet estimation methods are introduced for curves in the non-Euclidean space of Hermitian positive definite matrices, with in mind the application to Fourier spectral estimation of multivariate stationary time series. The main focus is on intrinsic average-interpolation wavelet transforms in the space of positive definite matrices equipped with an affine-invariant Riemannian metric, and convergence rates of linear wavelet thresholding are derived for intrinsically smooth curves of Hermitian positive definite matrices. In the context of multivariate Fourier spectral estimation, intrinsic wavelet thresholding is equivariant under a change of basis of the time series, and nonlinear wavelet thresholding is able to capture localized features in the spectral density matrix across frequency, always guaranteeing positive definite estimates. The finite-sample performance of intrinsic wavelet thresholding is assessed by means of simulated data and compared to several benchmark estimators in the Riemannian manifold. Further illustrations are provided by examining the multivariate spectra of trial-replicated brain signal time series recorded during a learning experiment. Supplementary materials for this article are available online.

Suggested Citation

  • Joris Chau & Rainer von Sachs, 2021. "Intrinsic Wavelet Regression for Curves of Hermitian Positive Definite Matrices," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(534), pages 819-832, April.
  • Handle: RePEc:taf:jnlasa:v:116:y:2021:i:534:p:819-832
    DOI: 10.1080/01621459.2019.1700129
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2019.1700129
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2019.1700129?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bailly, Gabriel & von Sachs, Rainer, 2024. "Time-Varying Covariance Matrices Estimation by Nonlinear Wavelet Thresholding in a Log-Euclidean Riemannian Manifold," LIDAM Discussion Papers ISBA 2024004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Chau, Joris & von Sachs, Rainer, 2022. "Time-varying spectral matrix estimation via intrinsic wavelet regression for surfaces of Hermitian positive definite matrices," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    3. Evangelos E. Ioannidis, 2022. "A new non‐parametric cross‐spectrum estimator," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(5), pages 808-827, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:116:y:2021:i:534:p:819-832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.