Author
Listed:
- David S. Matteson
- Nicholas A. James
Abstract
Change point analysis has applications in a wide variety of fields. The general problem concerns the inference of a change in distribution for a set of time-ordered observations. Sequential detection is an online version in which new data are continually arriving and are analyzed adaptively. We are concerned with the related, but distinct, offline version, in which retrospective analysis of an entire sequence is performed. For a set of multivariate observations of arbitrary dimension, we consider nonparametric estimation of both the number of change points and the positions at which they occur. We do not make any assumptions regarding the nature of the change in distribution or any distribution assumptions beyond the existence of the αth absolute moment, for some α is an element of (0, 2). Estimation is based on hierarchical clustering and we propose both divisive and agglomerative algorithms. The divisive method is shown to provide consistent estimates of both the number and the location of change points under standard regularity assumptions. We compare the proposed approach with competing methods in a simulation study. Methods from cluster analysis are applied to assess performance and to allow simple comparisons of location estimates, even when the estimated number differs. We conclude with applications in genetics, finance, and spatio-temporal analysis. Supplementary materials for this article are available online.
Suggested Citation
David S. Matteson & Nicholas A. James, 2014.
"A Nonparametric Approach for Multiple Change Point Analysis of Multivariate Data,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 334-345, March.
Handle:
RePEc:taf:jnlasa:v:109:y:2014:i:505:p:334-345
DOI: 10.1080/01621459.2013.849605
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:109:y:2014:i:505:p:334-345. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.