IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v36y2015i5p672-686.html
   My bibliography  Save this article

Testing for Predictability in Financial Returns Using Statistical Learning Procedures

Author

Listed:
  • Neil Kellard
  • Denise Osborn
  • Jerry Coakley
  • Imanol Arrieta-ibarra
  • Ignacio N. Lobato

Abstract

type="main" xml:id="jtsa12120-abs-0001"> This article examines the ability of recently developed statistical learning procedures, such as random forests or support vector machines, for forecasting the first two moments of stock market daily returns. These tools present the advantage of the flexibility of the considered nonlinear regression functions even in the presence of many potential predictors. We consider two cases: where the agent's information set only includes the past of the return series, and where this set includes past values of relevant economic series, such as interest rates, commodities prices or exchange rates. Even though these procedures seem to be of no much use for predicting returns, it appears that there is real potential for some of these procedures, especially support vector machines, to improve over the standard GARCH(1,1) model the out-of-sample forecasting ability for squared returns. The researcher has to be cautious on the number of predictors employed and on the specific implementation of the procedures since using many predictors and the default settings of standard computing packages leads to overfitted models and to larger standard errors.

Suggested Citation

  • Neil Kellard & Denise Osborn & Jerry Coakley & Imanol Arrieta-ibarra & Ignacio N. Lobato, 2015. "Testing for Predictability in Financial Returns Using Statistical Learning Procedures," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(5), pages 672-686, September.
  • Handle: RePEc:bla:jtsera:v:36:y:2015:i:5:p:672-686
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/jtsa.12120
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Racine, Jeffrey, 2001. "On the Nonlinear Predictability of Stock Returns Using Financial and Economic Variables," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(3), pages 380-382, July.
    2. Lobato I. N., 2001. "Testing That a Dependent Process Is Uncorrelated," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1066-1076, September.
    3. Lee, Tae-Hwy & White, Halbert & Granger, Clive W. J., 1993. "Testing for neglected nonlinearity in time series models : A comparison of neural network methods and alternative tests," Journal of Econometrics, Elsevier, vol. 56(3), pages 269-290, April.
    4. Qi, Min, 1999. "Nonlinear Predictability of Stock Returns Using Financial and Economic Variables," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(4), pages 419-429, October.
    5. Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
    6. Nesreen Ahmed & Amir Atiya & Neamat El Gayar & Hisham El-Shishiny, 2010. "An Empirical Comparison of Machine Learning Models for Time Series Forecasting," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 594-621.
    7. Rapach, David E. & Wohar, Mark E., 2006. "In-sample vs. out-of-sample tests of stock return predictability in the context of data mining," Journal of Empirical Finance, Elsevier, vol. 13(2), pages 231-247, March.
    8. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    9. Kellard, Neil M. & Nankervis, John C. & Papadimitriou, Fotios I., 2010. "Predicting the equity premium with dividend ratios: Reconciling the evidence," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 539-551, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Söhnke M. Bartram & Jürgen Branke & Mehrshad Motahari, 2020. "Artificial intelligence in asset management," Working Papers 20202001, Cambridge Judge Business School, University of Cambridge.
    2. Manuel Nunes & Enrico Gerding & Frank McGroarty & Mahesan Niranjan, 2020. "Long short-term memory networks and laglasso for bond yield forecasting: Peeping inside the black box," Papers 2005.02217, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timo Teräsvirta & Marcelo C. Medeiros & Gianluigi Rech, 2006. "Building neural network models for time series: a statistical approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(1), pages 49-75.
    2. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    3. Gupta, Rangan & Modise, Mampho P., 2013. "Macroeconomic Variables and South African Stock Return Predictability," Economic Modelling, Elsevier, vol. 30(C), pages 612-622.
    4. Anders Bredahl Kock & Timo Teräsvirta, 2016. "Forecasting Macroeconomic Variables Using Neural Network Models and Three Automated Model Selection Techniques," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1753-1779, December.
    5. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    6. David McMillan & Mark Wohar, 2013. "UK stock market predictability: evidence of time variation," Applied Financial Economics, Taylor & Francis Journals, vol. 23(12), pages 1043-1055, June.
    7. Anesti, Nikoleta & Kalamara, Eleni & Kapetanios, George, 2021. "Forecasting UK GDP growth with large survey panels," Bank of England working papers 923, Bank of England.
    8. Marcos Álvarez-Díaz & Alberto Álvarez, 2002. "Predicción No-Lineal De Tipos De Cambio: Algoritmos Genéticos, Redes Neuronales Y Fusión De Datos," Working Papers 0205, Universidade de Vigo, Departamento de Economía Aplicada.
    9. Goodness C. Aye & Stephen M. Miller & Rangan Gupta & Mehmet Balcilar, 2016. "Forecasting US real private residential fixed investment using a large number of predictors," Empirical Economics, Springer, vol. 51(4), pages 1557-1580, December.
    10. Rebeca Jiménez-Rodríguez, 2004. "Oil Price Shocks: Testing for Non-linearity," CSEF Working Papers 115, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
    11. Georg Keilbar & Yanfen Zhang, 2021. "On cointegration and cryptocurrency dynamics," Digital Finance, Springer, vol. 3(1), pages 1-23, March.
    12. Corradi, Valentina & Swanson, Norman R., 2002. "A consistent test for nonlinear out of sample predictive accuracy," Journal of Econometrics, Elsevier, vol. 110(2), pages 353-381, October.
    13. Corradi, Valentina & Swanson, Norman R., 2004. "Some recent developments in predictive accuracy testing with nested models and (generic) nonlinear alternatives," International Journal of Forecasting, Elsevier, vol. 20(2), pages 185-199.
    14. Guilherme Lindenmeyer & Pedro Pablo Skorin & Hudson da Silva Torrent, 2021. "Using boosting for forecasting electric energy consumption during a recession: a case study for the Brazilian State Rio Grande do Sul," Letters in Spatial and Resource Sciences, Springer, vol. 14(2), pages 111-128, August.
    15. Zacharias Psaradakis & Marián Vávra, 2019. "Portmanteau tests for linearity of stationary time series," Econometric Reviews, Taylor & Francis Journals, vol. 38(2), pages 248-262, February.
    16. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    17. Joseph P. Byrne & Dimitris Korobilis & Pinho J. Ribeiro, 2018. "On The Sources Of Uncertainty In Exchange Rate Predictability," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 59(1), pages 329-357, February.
    18. Terasvirta, Timo, 2006. "Forecasting economic variables with nonlinear models," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457, Elsevier.
    19. Qing Cao & Mark Parry & Karyl Leggio, 2011. "The three-factor model and artificial neural networks: predicting stock price movement in China," Annals of Operations Research, Springer, vol. 185(1), pages 25-44, May.
    20. Giot, Pierre & Petitjean, Mikael, 2007. "The information content of the Bond-Equity Yield Ratio: Better than a random walk?," International Journal of Forecasting, Elsevier, vol. 23(2), pages 289-305.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:36:y:2015:i:5:p:672-686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.