IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v25y2004i4p563-582.html
   My bibliography  Save this article

Kernel deconvolution of stochastic volatility models

Author

Listed:
  • Fabienne Comte

Abstract

. In this paper, we study the problem of the nonparametric estimation of the function m in a stochastic volatility model ht = exp(Xt/2λ)ξt, Xt = m(Xt−1) + ηt, where ξt is a Gaussian white noise. We show that the model can be written as an autoregression with errors‐in‐variables. Then an adaptation of the deconvolution kernel estimator proposed by Fan and Truong [Annals of Statistics, 21, (1993) 1900] estimates the function m with the optimal rate, which depends on the distribution of the measurement error. The rates vary from powers of n to powers of ln(n) depending on the rate of decay near infinity of the characteristic function of this noise. The performance of the method are studied by some simulation experiments and some real data are also examined.

Suggested Citation

  • Fabienne Comte, 2004. "Kernel deconvolution of stochastic volatility models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(4), pages 563-582, July.
  • Handle: RePEc:bla:jtsera:v:25:y:2004:i:4:p:563-582
    DOI: 10.1111/j.1467-9892.2004.01825.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9892.2004.01825.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9892.2004.01825.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Terui, Nobuhiko & van Dijk, Herman K., 2002. "Combined forecasts from linear and nonlinear time series models," International Journal of Forecasting, Elsevier, vol. 18(3), pages 421-438.
    2. Gourieroux, Christian & Monfort, Alain, 1992. "Qualitative threshold ARCH models," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 159-199.
    3. Fan, Jianqing & Masry, Elias, 1992. "Multivariate regression estimation with errors-in-variables: Asymptotic normality for mixing processes," Journal of Multivariate Analysis, Elsevier, vol. 43(2), pages 237-271, November.
    4. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    5. Hardle, W. & Tsybakov, A., 1997. "Local polynomial estimators of the volatility function in nonparametric autoregression," Journal of Econometrics, Elsevier, vol. 81(1), pages 223-242, November.
    6. Fan, Jianqing & Yao, Qiwei, 1998. "Efficient estimation of conditional variance functions in stochastic regression," LSE Research Online Documents on Economics 6635, London School of Economics and Political Science, LSE Library.
    7. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    8. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Van Es, Bert & Spreij, Peter, 2011. "Estimation of a multivariate stochastic volatility density by kernel deconvolution," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 683-697, March.
    2. Jean-Jacques Forneron, 2019. "A Sieve-SMM Estimator for Dynamic Models," Papers 1902.01456, arXiv.org, revised Jan 2023.
    3. Zu, Yang, 2015. "Nonparametric specification tests for stochastic volatility models based on volatility density," Journal of Econometrics, Elsevier, vol. 187(1), pages 323-344.
    4. Yu, Zhuoxi & Wang, Dehui & Shi, Ningzhong, 2009. "Semiparametric estimation of regression functions in autoregressive models," Statistics & Probability Letters, Elsevier, vol. 79(2), pages 165-172, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038, Elsevier.
    2. Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
    3. Rui Vilela Mendes & M. J. Oliveira, 2006. "A data-reconstructed fractional volatility model," Papers math/0602013, arXiv.org, revised Jun 2007.
    4. Wang, Xiao-Tian & Wu, Min & Zhou, Ze-Min & Jing, Wei-Shu, 2012. "Pricing European option with transaction costs under the fractional long memory stochastic volatility model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1469-1480.
    5. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    6. Jianqing Fan, 2004. "A selective overview of nonparametric methods in financial econometrics," Papers math/0411034, arXiv.org.
    7. F. Fornari & A. Mele, 1998. "ARCH Models and Option Pricing : The Continuous Time Connection," THEMA Working Papers 98-30, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    8. Dominique Guegan & Jing Zhang, 2009. "Pricing bivariate option under GARCH-GH model with dynamic copula: application for Chinese market," PSE-Ecole d'économie de Paris (Postprint) halshs-00368336, HAL.
    9. Dominique Guegan & Jing Zang, 2009. "Pricing bivariate option under GARCH-GH model with dynamic copula: application for Chinese market," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 777-795.
    10. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    11. Bollerslev, Tim & Ole Mikkelsen, Hans, 1999. "Long-term equity anticipation securities and stock market volatility dynamics," Journal of Econometrics, Elsevier, vol. 92(1), pages 75-99, September.
    12. Fornari, Fabio & Mele, Antonio, 2001. "Recovering the probability density function of asset prices using garch as diffusion approximations," Journal of Empirical Finance, Elsevier, vol. 8(1), pages 83-110, March.
    13. Comte, F. & Rozenholc, Y., 2002. "Adaptive estimation of mean and volatility functions in (auto-)regressive models," Stochastic Processes and their Applications, Elsevier, vol. 97(1), pages 111-145, January.
    14. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 2000. "Pricing and hedging long-term options," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 277-318.
    15. Casas, Isabel & Gao, Jiti, 2008. "Econometric estimation in long-range dependent volatility models: Theory and practice," Journal of Econometrics, Elsevier, vol. 147(1), pages 72-83, November.
    16. Jingzhi Huang & Liuren Wu, 2004. "Specification Analysis of Option Pricing Models Based on Time- Changed Levy Processes," Finance 0401002, University Library of Munich, Germany.
    17. Christian M. Hafner & Wolfgang HÄrdle, 2000. "Discrete time option pricing with flexible volatility estimation," Finance and Stochastics, Springer, vol. 4(2), pages 189-207.
    18. Fabio Fornari & Antonio Mele, 1997. "Weak convergence and distributional assumptions for a general class of nonliner arch models," Econometric Reviews, Taylor & Francis Journals, vol. 16(2), pages 205-227.
    19. Joseph Ngatchou-Wandji & Marwa Ltaifa & Didier Alain Njamen Njomen & Jia Shen, 2022. "Nonparametric Estimation of the Density Function of the Distribution of the Noise in CHARN Models," Mathematics, MDPI, vol. 10(4), pages 1-20, February.
    20. Muneer Shaik & S. Maheswaran, 2019. "Robust Volatility Estimation with and Without the Drift Parameter," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(1), pages 57-91, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:25:y:2004:i:4:p:563-582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.