IDEAS home Printed from https://ideas.repec.org/a/bla/jrinsu/v88y2021i4p1057-1094.html
   My bibliography  Save this article

High‐water mark fee structure in variable annuities

Author

Listed:
  • David Landriault
  • Bin Li
  • Dongchen Li
  • Yumin Wang

Abstract

This paper proposes a novel high‐water mark fee structure and investigates its impact on the marketability of variable annuities. To evaluate the welfare effects of holding a variable annuity, we adopt mean‐variance analysis. By also examining the welfare effects of holding two alternative investments, we introduce a quantitative measure, namely a compatible set of risk aversions, to assess the marketability of the variable annuity under a certain fee structure. Comparing the compatible sets and the welfare effects of holding the variable annuity under the high‐water mark fee structure with those under a constant and a state‐dependent fee structure, we find that the high‐water mark fee structure improves the variable annuity's marketability in two aspects: First, it makes the variable annuity preferable to the alternative investments for a broader range of policyholders. Second, when the variable annuity is preferred over the alternative investments, it produces the highest welfare for the policyholder.

Suggested Citation

  • David Landriault & Bin Li & Dongchen Li & Yumin Wang, 2021. "High‐water mark fee structure in variable annuities," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(4), pages 1057-1094, December.
  • Handle: RePEc:bla:jrinsu:v:88:y:2021:i:4:p:1057-1094
    DOI: 10.1111/jori.12345
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jori.12345
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jori.12345?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Paolo Guasoni & Jan Obłój, 2016. "The Incentives Of Hedge Fund Fees And High-Water Marks," Mathematical Finance, Wiley Blackwell, vol. 26(2), pages 269-295, April.
    2. William N. Goetzmann & Jonathan E. Ingersoll & Stephen A. Ross, 2003. "High‐Water Marks and Hedge Fund Management Contracts," Journal of Finance, American Finance Association, vol. 58(4), pages 1685-1718, August.
    3. Anne MacKay & Maciej Augustyniak & Carole Bernard & Mary R. Hardy, 2017. "Risk Management of Policyholder Behavior in Equity-Linked Life Insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(2), pages 661-690, June.
    4. Zhenyu Cui & Runhuan Feng & Anne MacKay, 2017. "Variable Annuities with VIX-Linked Fee Structure under a Heston-Type Stochastic Volatility Model," North American Actuarial Journal, Taylor & Francis Journals, vol. 21(3), pages 458-483, July.
    5. John H. Cochrane, 2014. "A Mean-Variance Benchmark for Intertemporal Portfolio Theory," Journal of Finance, American Finance Association, vol. 69(1), pages 1-49, February.
    6. Carole Bernard & Thorsten Moenig, 2019. "Where Less Is More: Reducing Variable Annuity Fees to Benefit Policyholder and Insurer," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 86(3), pages 761-782, September.
    7. Bauer, Daniel & Kling, Alexander & Russ, Jochen, 2008. "A Universal Pricing Framework for Guaranteed Minimum Benefits in Variable Annuities 1," ASTIN Bulletin, Cambridge University Press, vol. 38(2), pages 621-651, November.
    8. Munk, Claus, 2020. "A mean-variance benchmark for household portfolios over the life cycle," Journal of Banking & Finance, Elsevier, vol. 116(C).
    9. Wang, J. & Forsyth, P.A., 2011. "Continuous time mean variance asset allocation: A time-consistent strategy," European Journal of Operational Research, Elsevier, vol. 209(2), pages 184-201, March.
    10. Milevsky, Moshe A. & Salisbury, Thomas S., 2006. "Financial valuation of guaranteed minimum withdrawal benefits," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 21-38, February.
    11. Lan, Yingcong & Wang, Neng & Yang, Jinqiang, 2013. "The economics of hedge funds," Journal of Financial Economics, Elsevier, vol. 110(2), pages 300-323.
    12. Christian Knoller & Gunther Kraut & Pascal Schoenmaekers, 2016. "On the Propensity to Surrender a Variable Annuity Contract: An Empirical Analysis of Dynamic Policyholder Behavior," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 83(4), pages 979-1006, December.
    13. Daniel Bauer & Jin Gao & Thorsten Moenig & Eric R. Ulm & Nan Zhu, 2017. "Policyholder Exercise Behavior in Life Insurance: The State of Affairs," North American Actuarial Journal, Taylor & Francis Journals, vol. 21(4), pages 485-501, October.
    14. Bernard, Carole & Hardy, Mary & Mackay, Anne, 2014. "State-Dependent Fees For Variable Annuity Guarantees," ASTIN Bulletin, Cambridge University Press, vol. 44(3), pages 559-585, September.
    15. Stavros Panageas & Mark M. Westerfield, 2009. "High‐Water Marks: High Risk Appetites? Convex Compensation, Long Horizons, and Portfolio Choice," Journal of Finance, American Finance Association, vol. 64(1), pages 1-36, February.
    16. Yao Tung Huang & Yue Kuen Kwok, 2016. "Regression-based Monte Carlo methods for stochastic control models: variable annuities with lifelong guarantees," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 905-928, June.
    17. Tomas Björk & Agatha Murgoci & Xun Yu Zhou, 2014. "Mean–Variance Portfolio Optimization With State-Dependent Risk Aversion," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 1-24, January.
    18. Thorsten Moenig & Nan Zhu, 2018. "Lapse‐and‐Reentry in Variable Annuities," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 85(4), pages 911-938, December.
    19. Min Dai & Yue Kuen Kwok & Jianping Zong, 2008. "Guaranteed Minimum Withdrawal Benefit In Variable Annuities," Mathematical Finance, Wiley Blackwell, vol. 18(4), pages 595-611, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Gu & Zou, Bin, 2021. "Optimal fee structure of variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 587-601.
    2. Tiziano De Angelis & Alessandro Milazzo & Gabriele Stabile, 2024. "On variable annuities with surrender charges," Papers 2405.02115, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Gu & Zou, Bin, 2021. "Optimal fee structure of variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 587-601.
    2. Thorsten Moenig, 2021. "Efficient valuation of variable annuity portfolios with dynamic programming," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(4), pages 1023-1055, December.
    3. Zhenyu Cui & Anne MacKay & Marie-Claude Vachon, 2022. "Analysis of VIX-linked fee incentives in variable annuities via continuous-time Markov chain approximation," Papers 2207.14793, arXiv.org.
    4. Moenig, Thorsten, 2021. "Variable annuities: Market incompleteness and policyholder behavior," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 63-78.
    5. Kouritzin, Michael A. & MacKay, Anne, 2018. "VIX-linked fees for GMWBs via explicit solution simulation methods," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 1-17.
    6. Daniel Bauer & Thorsten Moenig, 2023. "Cheaper by the bundle: The interaction of frictions and option exercise in variable annuities," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 90(2), pages 459-486, June.
    7. Jin Sun & Pavel V. Shevchenko & Man Chung Fung, 2018. "The Impact of Management Fees on the Pricing of Variable Annuity Guarantees," Risks, MDPI, vol. 6(3), pages 1-20, September.
    8. Huang, Yiming & Mamon, Rogemar & Xiong, Heng, 2022. "Valuing guaranteed minimum accumulation benefits by a change of numéraire approach," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 1-26.
    9. Fontana, Claudio & Rotondi, Francesco, 2023. "Valuation of general GMWB annuities in a low interest rate environment," Insurance: Mathematics and Economics, Elsevier, vol. 112(C), pages 142-167.
    10. Bacinello, Anna Rita & Maggistro, Rosario & Zoccolan, Ivan, 2024. "Risk-neutral valuation of GLWB riders in variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 114(C), pages 1-14.
    11. Michael A. Kouritzin & Anne MacKay, 2017. "VIX-linked fees for GMWBs via Explicit Solution Simulation Methods," Papers 1708.06886, arXiv.org, revised Apr 2018.
    12. Claudio Fontana & Francesco Rotondi, 2022. "Valuation of general GMWB annuities in a low interest rate environment," Papers 2208.10183, arXiv.org, revised Aug 2023.
    13. Jin Sun & Pavel V. Shevchenko & Man Chung Fung, 2017. "A note on the impact of management fees on the pricing of variable annuity guarantees," Papers 1705.03787, arXiv.org, revised May 2017.
    14. Feng, Runhuan & Yi, Bingji, 2019. "Quantitative modeling of risk management strategies: Stochastic reserving and hedging of variable annuity guaranteed benefits," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 60-73.
    15. Yaowen Lu & Duy-Minh Dang, 2023. "A semi-Lagrangian $\epsilon$-monotone Fourier method for continuous withdrawal GMWBs under jump-diffusion with stochastic interest rate," Papers 2310.00606, arXiv.org.
    16. Anne Mackay & Marie-Claude Vachon, 2023. "On an Optimal Stopping Problem with a Discontinuous Reward," Papers 2311.03538, arXiv.org, revised Nov 2023.
    17. Charles Guy Njike Leunga & Donatien Hainaut, 2022. "Valuation of Annuity Guarantees Under a Self-Exciting Switching Jump Model," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 963-990, June.
    18. Mu, Congming & Yan, Jingzhou & Liang, Zhian, 2021. "Optimal risk taking under high-water mark contract with jump risk," Finance Research Letters, Elsevier, vol. 38(C).
    19. Li, Jiangyuan & Liu, Bo & Yang, Jinqiang & Zou, Zhentao, 2020. "Hedge fund’s dynamic leverage decisions under time-inconsistent preferences," European Journal of Operational Research, Elsevier, vol. 284(2), pages 779-791.
    20. Benoît Dewaele, 2013. "Leverage and Alpha: The Case of Funds of Hedge Funds," Working Papers CEB 13-033, ULB -- Universite Libre de Bruxelles.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jrinsu:v:88:y:2021:i:4:p:1057-1094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/ariaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.