IDEAS home Printed from https://ideas.repec.org/a/bla/jrinsu/v88y2021i3p529-567.html
   My bibliography  Save this article

Estimating the relation between digitalization and the market value of insurers

Author

Listed:
  • Simon Fritzsch
  • Philipp Scharner
  • Gregor Weiß

Abstract

We analyze the relation between digitalization and the market value of US insurance companies. To create a text‐based measure that captures the extent to which insurers digitalize, we apply an unsupervised machine learning algorithm—Latent Dirichlet Allocation—to their annual reports. We show that an increase in digitalization is associated with an increase in market valuations in the insurance sector. In detail, capital market participants seem to reward digitalization efforts of an insurer in the form of higher absolute market capitalizations and market‐to‐book ratios. Additionally, we provide evidence that the positive relation between digitalization and market valuations is robust to sentiment in the annual reports and the choice of the reference document on digitalization, both being issues of particular importance in text‐based analyses.

Suggested Citation

  • Simon Fritzsch & Philipp Scharner & Gregor Weiß, 2021. "Estimating the relation between digitalization and the market value of insurers," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(3), pages 529-567, September.
  • Handle: RePEc:bla:jrinsu:v:88:y:2021:i:3:p:529-567
    DOI: 10.1111/jori.12346
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jori.12346
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jori.12346?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bernardo Nicoletti, 2016. "Innovation in Insurance," Palgrave Studies in Financial Services Technology, in: Digital Insurance, chapter 1, pages 6-46, Palgrave Macmillan.
    2. Desyllas, Panos & Sako, Mari, 2013. "Profiting from business model innovation: Evidence from Pay-As-You-Drive auto insurance," Research Policy, Elsevier, vol. 42(1), pages 101-116.
    3. Yekini, Liafisu Sina & Wisniewski, Tomasz Piotr & Millo, Yuval, 2016. "Market reaction to the positiveness of annual report narratives," The British Accounting Review, Elsevier, vol. 48(4), pages 415-430.
    4. Scott, Susan V. & Van Reenen, John & Zachariadis, Markos, 2017. "The long-term effect of digital innovation on bank performance: An empirical study of SWIFT adoption in financial services," Research Policy, Elsevier, vol. 46(5), pages 984-1004.
    5. Stephen Hansen & Michael McMahon & Andrea Prat, 2018. "Transparency and Deliberation Within the FOMC: A Computational Linguistics Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(2), pages 801-870.
    6. Alexander Bohnert & Albrecht Fritzsche & Shirley Gregor, 2019. "Digital agendas in the insurance industry: the importance of comprehensive approaches†," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 44(1), pages 1-19, January.
    7. Michelle Lowry & Roni Michaely & Ekaterina Volkova & Francesca Cornelli, 0. "Information Revealed through the Regulatory Process: Interactions between the SEC and Companies ahead of Their IPO," Review of Financial Studies, Society for Financial Studies, vol. 33(12), pages 5510-5554.
    8. Teh, Yee Whye & Jordan, Michael I. & Beal, Matthew J. & Blei, David M., 2006. "Hierarchical Dirichlet Processes," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1566-1581, December.
    9. Kathleen Weiss Hanley, 2010. "The Information Content of IPO Prospectuses," The Review of Financial Studies, Society for Financial Studies, vol. 23(7), pages 2821-2864, July.
    10. Martin Eling & Martin Lehmann, 2018. "The Impact of Digitalization on the Insurance Value Chain and the Insurability of Risks," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 43(3), pages 359-396, July.
    11. Antonella Cappiello, 2020. "The Digital (R)evolution of Insurance Business Models," American Journal of Economics and Business Administration, Science Publications, vol. 12(1), pages 1-13, January.
    12. Franklin Allen, 1993. "Strategic Management and Financial Markets," Center for Financial Institutions Working Papers 94-04, Wharton School Center for Financial Institutions, University of Pennsylvania.
    13. Kathleen Weiss Hanley & Gerard Hoberg, 2019. "Dynamic Interpretation of Emerging Risks in the Financial Sector," The Review of Financial Studies, Society for Financial Studies, vol. 32(12), pages 4543-4603.
    14. Michelle Lowry & Roni Michaely & Ekaterina Volkova & Francesca Cornelli, 2020. "Information Revealed through the Regulatory Process: Interactions between the SEC and Companies ahead of Their IPO," The Review of Financial Studies, Society for Financial Studies, vol. 33(12), pages 5510-5554.
    15. Li, Feng, 2008. "Annual report readability, current earnings, and earnings persistence," Journal of Accounting and Economics, Elsevier, vol. 45(2-3), pages 221-247, August.
    16. Jegadeesh, Narasimhan & Wu, Di, 2013. "Word power: A new approach for content analysis," Journal of Financial Economics, Elsevier, vol. 110(3), pages 712-729.
    17. Margaret E. Roberts & Brandon M. Stewart & Edoardo M. Airoldi, 2016. "A Model of Text for Experimentation in the Social Sciences," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 988-1003, July.
    18. Yang Bao & Anindya Datta, 2014. "Simultaneously Discovering and Quantifying Risk Types from Textual Risk Disclosures," Management Science, INFORMS, vol. 60(6), pages 1371-1391, June.
    19. Matthew Gentzkow & Bryan Kelly & Matt Taddy, 2019. "Text as Data," Journal of Economic Literature, American Economic Association, vol. 57(3), pages 535-574, September.
    20. Tim Loughran & Bill Mcdonald, 2016. "Textual Analysis in Accounting and Finance: A Survey," Journal of Accounting Research, Wiley Blackwell, vol. 54(4), pages 1187-1230, September.
    21. Hoberg, Gerard & Lewis, Craig, 2017. "Do fraudulent firms produce abnormal disclosure?," Journal of Corporate Finance, Elsevier, vol. 43(C), pages 58-85.
    22. Franklin Allen, 1993. "Strategic management and financial markets," Strategic Management Journal, Wiley Blackwell, vol. 14(S2), pages 11-22, December.
    23. Zheng Tracy Ke & Bryan T. Kelly & Dacheng Xiu, 2019. "Predicting Returns With Text Data," NBER Working Papers 26186, National Bureau of Economic Research, Inc.
    24. Nadine Gatzert & Dinah Heidinger, 2020. "An Empirical Analysis of Market Reactions to the First Solvency and Financial Condition Reports in the European Insurance Industry," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 87(2), pages 407-436, June.
    25. Frazier, Kb & Ingram, Rw & Tennyson, Bm, 1984. "A Methodology For The Analysis Of Narrative Accounting Disclosures," Journal of Accounting Research, Wiley Blackwell, vol. 22(1), pages 318-331.
    26. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    27. repec:bla:jfinan:v:59:y:2004:i:3:p:1259-1294 is not listed on IDEAS
    28. Paul Goldsmith-Pinkham & Beverly Hirtle & David O. Lucca, 2016. "Parsing the content of bank supervision," Staff Reports 770, Federal Reserve Bank of New York.
    29. Gerard Hoberg & Gordon Phillips & Nagpurnanand Prabhala, 2014. "Product Market Threats, Payouts, and Financial Flexibility," Journal of Finance, American Finance Association, vol. 69(1), pages 293-324, February.
    30. Bodnaruk, Andriy & Loughran, Tim & McDonald, Bill, 2015. "Using 10-K Text to Gauge Financial Constraints," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 50(4), pages 623-646, August.
    31. Tim Loughran & Bill Mcdonald, 2011. "When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10‐Ks," Journal of Finance, American Finance Association, vol. 66(1), pages 35-65, February.
    32. Allen H. Huang & Reuven Lehavy & Amy Y. Zang & Rong Zheng, 2018. "Analyst Information Discovery and Interpretation Roles: A Topic Modeling Approach," Management Science, INFORMS, vol. 64(6), pages 2833-2855, June.
    33. Scott Deerwester & Susan T. Dumais & George W. Furnas & Thomas K. Landauer & Richard Harshman, 1990. "Indexing by latent semantic analysis," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 41(6), pages 391-407, September.
    34. Grosen, Anders & Løchte Jørgensen, Peter, 2001. "Life Insurance Liabilities at Market Value," Finance Working Papers 01-4, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Eling & Irina Gemmo & Danjela Guxha & Hato Schmeiser, 2024. "Big data, risk classification, and privacy in insurance markets," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 49(1), pages 75-126, March.
    2. Hertel, Tobias & Kaya, Devrimi & Reichmann, Doron, 2024. "Corporate culture and M&A deals: Using text from crowdsourced employer reviews to measure cultural differences," Journal of Banking & Finance, Elsevier, vol. 161(C).
    3. Daniel Bauer & James Tyler Leverty & Joan Schmit & Justin Sydnor, 2021. "Symposium on insure‐tech, digitalization, and big‐data techniques in risk management and insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(3), pages 525-528, September.
    4. An Chen & Yusha Chen & Finbarr Murphy & Wei Xu & Xian Xu, 2023. "How does the insurer's mobile application sales strategy perform?," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 90(2), pages 487-519, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. García, Diego & Hu, Xiaowen & Rohrer, Maximilian, 2023. "The colour of finance words," Journal of Financial Economics, Elsevier, vol. 147(3), pages 525-549.
    2. Ardia, David & Bluteau, Keven & Boudt, Kris, 2022. "Media abnormal tone, earnings announcements, and the stock market," Journal of Financial Markets, Elsevier, vol. 61(C).
    3. James P. Ryans, 2021. "Textual classification of SEC comment letters," Review of Accounting Studies, Springer, vol. 26(1), pages 37-80, March.
    4. Gustaf Bellstam & Sanjai Bhagat & J. Anthony Cookson, 2021. "A Text-Based Analysis of Corporate Innovation," Management Science, INFORMS, vol. 67(7), pages 4004-4031, July.
    5. Ingrid E. Fisher & Margaret R. Garnsey & Mark E. Hughes, 2016. "Natural Language Processing in Accounting, Auditing and Finance: A Synthesis of the Literature with a Roadmap for Future Research," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 23(3), pages 157-214, July.
    6. Cookson, J. Anthony & Moon, S. Katie & Noh, Joonki, 2020. "Imprecise and Informative: Lessons from Market Reactions to Imprecise Disclosure," SocArXiv akt2c, Center for Open Science.
    7. Nadine Gatzert & Dinah Heidinger, 2020. "An Empirical Analysis of Market Reactions to the First Solvency and Financial Condition Reports in the European Insurance Industry," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 87(2), pages 407-436, June.
    8. Senave, Elseline & Jans, Mieke J. & Srivastava, Rajendra P., 2023. "The application of text mining in accounting," International Journal of Accounting Information Systems, Elsevier, vol. 50(C).
    9. Chris Florackis & Christodoulos Louca & Roni Michaely & Michael Weber & Itay Goldstein, 2023. "Cybersecurity Risk," The Review of Financial Studies, Society for Financial Studies, vol. 36(1), pages 351-407.
    10. Nerissa C. Brown & Richard M. Crowley & W. Brooke Elliott, 2020. "What Are You Saying? Using topic to Detect Financial Misreporting," Journal of Accounting Research, Wiley Blackwell, vol. 58(1), pages 237-291, March.
    11. Bian, Shibo & Jia, Dekui & Li, Ruihai & Sun, Wujun & Yan, Zhipeng & Zheng, Yingfei, 2021. "Can management tone predict IPO performance? – Evidence from mandatory online roadshows in China," Pacific-Basin Finance Journal, Elsevier, vol. 68(C).
    12. Ioanna Kountouri & Eleftherios Manousakis & Andrianos E. Tsekrekos, 2019. "Latent semantic analysis of corporate social responsibility reports (with an application to Hellenic firms)," International Journal of Disclosure and Governance, Palgrave Macmillan, vol. 16(1), pages 1-19, March.
    13. Christina Bannier & Thomas Pauls & Andreas Walter, 2019. "Content analysis of business communication: introducing a German dictionary," Journal of Business Economics, Springer, vol. 89(1), pages 79-123, February.
    14. Daniel Borup & Jorge Wolfgang Hansen & Benjamin Dybro Liengaard & Erik Christian Montes Schütte, 2023. "Quantifying investor narratives and their role during COVID‐19," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 512-532, June.
    15. Matthew Gentzkow & Bryan T. Kelly & Matt Taddy, 2017. "Text as Data," NBER Working Papers 23276, National Bureau of Economic Research, Inc.
    16. Kothari, Pratik & Chance, Don M. & Ferris, Stephen P., 2021. "Bragging rights: Does corporate boasting imply value creation?," Journal of Corporate Finance, Elsevier, vol. 67(C).
    17. Richard Frankel & Jared Jennings & Joshua Lee, 2022. "Disclosure Sentiment: Machine Learning vs. Dictionary Methods," Management Science, INFORMS, vol. 68(7), pages 5514-5532, July.
    18. Möller, Rouven & Reichmann, Doron, 2021. "ECB language and stock returns – A textual analysis of ECB press conferences," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 590-604.
    19. Liu, Pu & Nguyen, Hazel T., 2020. "CEO characteristics and tone at the top inconsistency," Journal of Economics and Business, Elsevier, vol. 108(C).
    20. Pastwa, Anna M. & Shrestha, Prabal & Thewissen, James & Torsin, Wouter, 2021. "Unpacking the black box of ICO white papers: a topic modeling approach," LIDAM Discussion Papers LFIN 2021018, Université catholique de Louvain, Louvain Finance (LFIN).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jrinsu:v:88:y:2021:i:3:p:529-567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/ariaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.