IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-19335-2.html
   My bibliography  Save this article

Application of an analytical framework for multivariate mediation analysis of environmental data

Author

Listed:
  • Max T. Aung

    (University of Michigan School of Public Health)

  • Yanyi Song

    (University of Michigan School of Public Health)

  • Kelly K. Ferguson

    (Research Triangle Park)

  • David E. Cantonwine

    (Brigham and Women’s Hospital, Harvard Medical School)

  • Lixia Zeng

    (University of Michigan)

  • Thomas F. McElrath

    (Brigham and Women’s Hospital, Harvard Medical School)

  • Subramaniam Pennathur

    (University of Michigan
    University of Michigan
    University of Michigan)

  • John D. Meeker

    (University of Michigan School of Public Health)

  • Bhramar Mukherjee

    (University of Michigan School of Public Health
    University of Michigan School of Public Health)

Abstract

Diverse toxicological mechanisms may mediate the impact of environmental toxicants (phthalates, phenols, polycyclic aromatic hydrocarbons, and metals) on pregnancy outcomes. In this study, we introduce an analytical framework for multivariate mediation analysis to identify mediation pathways (q = 61 mediators) in the relationship between environmental toxicants (p = 38 analytes) and gestational age at delivery. Our analytical framework includes: (1) conducting pairwise mediation for unique exposure-mediator combinations, (2) exposure dimension reduction by estimating environmental risk scores, and (3) multivariate mediator analysis using either Bayesian shrinkage mediation analysis, population value decomposition, or mediation pathway penalization. Dimension reduction demonstrates that a one-unit increase in phthalate risk score is associated with a total effect of 1.07 lower gestational age (in weeks) at delivery (95% confidence interval: 0.48–1.67) and eicosanoids from the cytochrome p450 pathway mediated 26% of this effect (95% confidence interval: 4–63%). Eicosanoid products derived from the cytochrome p450 pathway may be important mediators of phthalate toxicity.

Suggested Citation

  • Max T. Aung & Yanyi Song & Kelly K. Ferguson & David E. Cantonwine & Lixia Zeng & Thomas F. McElrath & Subramaniam Pennathur & John D. Meeker & Bhramar Mukherjee, 2020. "Application of an analytical framework for multivariate mediation analysis of environmental data," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19335-2
    DOI: 10.1038/s41467-020-19335-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-19335-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-19335-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanyi Song & Xiang Zhou & Jian Kang & Max T. Aung & Min Zhang & Wei Zhao & Belinda L. Needham & Sharon L. R. Kardia & Yongmei Liu & John D. Meeker & Jennifer A. Smith & Bhramar Mukherjee, 2021. "Bayesian sparse mediation analysis with targeted penalization of natural indirect effects," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1391-1412, November.
    2. Cai, Xizhen & Zhu, Yeying & Huang, Yuan & Ghosh, Debashis, 2022. "High-dimensional causal mediation analysis based on partial linear structural equation models," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19335-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.