Combining cytotoxic agents with continuous dose levels in seamless phase I‐II clinical trials
Author
Abstract
Suggested Citation
DOI: 10.1111/rssc.12598
Download full text from publisher
References listed on IDEAS
- Mourad Tighiouart & André Rogatko, 2012. "Number of Patients per Cohort and Sample Size Considerations Using Dose Escalation with Overdose Control," Journal of Probability and Statistics, Hindawi, vol. 2012, pages 1-16, October.
- Zhengjia Chen & Yichuan Zhao & Ye Cui & Jeanne Kowalski, 2012. "Methodology and Application of Adaptive and Sequential Approaches in Contemporary Clinical Trials," Journal of Probability and Statistics, Hindawi, vol. 2012, pages 1-20, November.
- Ying Yuan & Guosheng Yin, 2009. "Bayesian dose finding by jointly modelling toxicity and efficacy as time‐to‐event outcomes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(5), pages 719-736, December.
- Suyu Liu & Beibei Guo & Ying Yuan, 2018. "A Bayesian Phase I/II Trial Design for Immunotherapy," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1016-1027, July.
- Xuelin Huang & Swati Biswas & Yasuhiro Oki & Jean-Pierre Issa & Donald A. Berry, 2007. "A Parallel Phase I/II Clinical Trial Design for Combination Therapies," Biometrics, The International Biometric Society, vol. 63(2), pages 429-436, June.
- Chunyan Cai & Ying Yuan & Yuan Ji, 2014. "A Bayesian dose finding design for oncology clinical trials of combinational biological agents," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(1), pages 159-173, January.
- Guosheng Yin & Yisheng Li & Yuan Ji, 2006. "Bayesian Dose-Finding in Phase I/II Clinical Trials Using Toxicity and Efficacy Odds Ratios," Biometrics, The International Biometric Society, vol. 62(3), pages 777-787, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Beibei Guo & Elizabeth Garrett‐Mayer & Suyu Liu, 2021. "A Bayesian phase I/II design for cancer clinical trials combining an immunotherapeutic agent with a chemotherapeutic agent," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1210-1229, November.
- Peter Müller & Don A. Berry & Andrew P. Grieve & Michael Krams, 2006. "A Bayesian Decision-Theoretic Dose-Finding Trial," Decision Analysis, INFORMS, vol. 3(4), pages 197-207, December.
- Thomas A. Murray & Peter F. Thall & Ying Yuan & Sarah McAvoy & Daniel R. Gomez, 2017. "Robust Treatment Comparison Based on Utilities of Semi-Competing Risks in Non-Small-Cell Lung Cancer," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 11-23, January.
- Sean M. Devlin & Alexia Iasonos & John O’Quigley, 2021. "Phase I clinical trials in adoptive T‐cell therapies," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 815-834, August.
- Beibei Guo & Ying Yuan, 2023. "DROID: dose‐ranging approach to optimizing dose in oncology drug development," Biometrics, The International Biometric Society, vol. 79(4), pages 2907-2919, December.
- Chunyan Cai & Ying Yuan & Yuan Ji, 2014. "A Bayesian dose finding design for oncology clinical trials of combinational biological agents," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(1), pages 159-173, January.
- Patricia Gilholm & Kerrie Mengersen & Helen Thompson, 2020. "Identifying latent subgroups of children with developmental delay using Bayesian sequential updating and Dirichlet process mixture modelling," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-17, June.
- Haitao Pan & Ping Huang & Zuoren Wang & Ling Wang & Chanjuan Li & Jielai Xia, 2013. "A Novel Bayesian Seamless Phase I/II Design," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-6, September.
- Peter F. Thall & Aniko Szabo & Hoang Q. Nguyen & Catherine M. Amlie-Lefond & Osama O. Zaidat, 2011. "Optimizing the Concentration and Bolus of a Drug Delivered by Continuous Infusion," Biometrics, The International Biometric Society, vol. 67(4), pages 1638-1646, December.
- Guosheng Yin & Ying Yuan, 2009. "Bayesian dose finding in oncology for drug combinations by copula regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(2), pages 211-224, May.
- Ying Kuen Cheung, 2014. "Simple benchmark for complex dose finding studies," Biometrics, The International Biometric Society, vol. 70(2), pages 389-397, June.
- Laura Deldossi & Silvia Angela Osmetti & Chiara Tommasi, 2019. "Optimal design to discriminate between rival copula models for a bivariate binary response," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 147-165, March.
- Nolan A. Wages & Mark R. Conaway & John O'Quigley, 2011. "Continual Reassessment Method for Partial Ordering," Biometrics, The International Biometric Society, vol. 67(4), pages 1555-1563, December.
- Beibei Guo & Ying Yuan, 2017. "Bayesian Phase I/II Biomarker-Based Dose Finding for Precision Medicine With Molecularly Targeted Agents," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 508-520, April.
- Peter F. Thall & Hoang Q. Nguyen & Ralph G. Zinner, 2017. "Parametric dose standardization for optimizing two-agent combinations in a phase I–II trial with ordinal outcomes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 201-224, January.
- Guosheng Yin & Ying Yuan, 2009. "A Latent Contingency Table Approach to Dose Finding for Combinations of Two Agents," Biometrics, The International Biometric Society, vol. 65(3), pages 866-875, September.
- Ying Yuan & Guosheng Yin, 2009. "Bayesian dose finding by jointly modelling toxicity and efficacy as time‐to‐event outcomes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(5), pages 719-736, December.
- Yuxi Tao & Junlin Liu & Zhihui Li & Jinguan Lin & Tao Lu & Fangrong Yan, 2013. "Dose-Finding Based on Bivariate Efficacy-Toxicity Outcome Using Archimedean Copula," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-6, November.
- Drovandi, Christopher C. & McGree, James M. & Pettitt, Anthony N., 2013. "Sequential Monte Carlo for Bayesian sequentially designed experiments for discrete data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 320-335.
- Nolan A. Wages & Craig L. Slingluff, 2020. "Flexible Phase I–II Design for Partially Ordered Regimens with Application to Therapeutic Cancer Vaccines," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(2), pages 104-123, July.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:71:y:2022:i:5:p:1996-2013. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.