IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v113y2018i523p1016-1027.html
   My bibliography  Save this article

A Bayesian Phase I/II Trial Design for Immunotherapy

Author

Listed:
  • Suyu Liu
  • Beibei Guo
  • Ying Yuan

Abstract

Immunotherapy is an innovative treatment approach that stimulates a patient’s immune system to fight cancer. It demonstrates characteristics distinct from conventional chemotherapy and stands to revolutionize cancer treatment. We propose a Bayesian phase I/II dose-finding design that incorporates the unique features of immunotherapy by simultaneously considering three outcomes: immune response, toxicity, and efficacy. The objective is to identify the biologically optimal dose, defined as the dose with the highest desirability in the risk–benefit tradeoff. An Emax model is utilized to describe the marginal distribution of the immune response. Conditional on the immune response, we jointly model toxicity and efficacy using a latent variable approach. Using the accumulating data, we adaptively randomize patients to experimental doses based on the continuously updated model estimates. A simulation study shows that our proposed design has good operating characteristics in terms of selecting the target dose and allocating patients to the target dose. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.

Suggested Citation

  • Suyu Liu & Beibei Guo & Ying Yuan, 2018. "A Bayesian Phase I/II Trial Design for Immunotherapy," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1016-1027, July.
  • Handle: RePEc:taf:jnlasa:v:113:y:2018:i:523:p:1016-1027
    DOI: 10.1080/01621459.2017.1383260
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2017.1383260
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2017.1383260?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José L. Jiménez & Mourad Tighiouart, 2022. "Combining cytotoxic agents with continuous dose levels in seamless phase I‐II clinical trials," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1996-2013, November.
    2. Beibei Guo & Elizabeth Garrett‐Mayer & Suyu Liu, 2021. "A Bayesian phase I/II design for cancer clinical trials combining an immunotherapeutic agent with a chemotherapeutic agent," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1210-1229, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:113:y:2018:i:523:p:1016-1027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.